Supplementary Information

Coated Sulfated Zircona/SAPO-34 for the direct conversion of CO₂ to light olefins

Authors: Adrian Ramirez^a, Abhishek Dutta Chowdhury^a, Mustafa Caglayan^a, Alberto Rodriguez-Gomez^a, Nimer Wehbe^b, Edy Abou-Hamad^b, Lieven Gevers^a, Samy Ould-Chikh^a, and Jorge Gascon^{a*}

^aKing Abdullah University of Science and Technology, KAUST Catalysis Center (KCC),

Advanced Catalytic Materials, Thuwal 23955, Saudi Arabia.

^bKing Abdullah University of Science and Technology, Core Labs, Thuwal 23955, Saudi Arabia.

Correspondence to: jorge.gascon@kaust.edu.sa

INDEX:

Table S1: Overview of state of the art for CO₂ conversion via bifunctional catalyst.

Table S2: Surface area (BET) and micropore analysis of SAPO-34 and Zr/SAPO-34.

Table S3: Acidy quantification from NH₃ TPD of the SAPO-34 and ZrS/SAPO-34 materials.

Table S4: Mass yield (%) to the different C_2 - C_5 olefins obtained in the 1-Octene cracking experiments for the SAPO-34 and ZrS/SAPO-34 materials.

Table S5: Product distribution of control experiment with Ethylene co-fed with ¹³CO on SAPO

 34 after 2 hours on the reaction stream.

Figure S1. HAADF-STEM images of the ZrS/SAPO-34 material showing several coated particles.

Figure S2. HAADF-STEM elemental analysis of Zr/SAPO-34.

Figure S3. X-Ray diffraction (XRD) patterns of SAPO-34 and Zr/SAPO-34.

Figure S4. Nitrogen adsorption-desorption isotherms of SAPO-34 and Zr/SAPO-34.

Figure S5. TEM images of the different ZrS loaded SAPO-34 materials.

Figure S6. ³¹P magic angle spinning (MAS, 20KHz) solid-state nuclear magnetic resonance spectra.

Figure S7. 2D ²⁷Al multiple-quantum (MQ) magic angle spinning (MAS, 20KHz) solid-state nuclear magnetic resonance spectra.

Figure S8. HAADF-STEM image and elemental analysis of the stand-alone ZrS catalyst.

Figure S9. Catalytic performance of the different configurations for the multifunctional materials.

Figure S10. ¹³C direct excitation MAS solid-state NMR spectra of post-reacted SAPO material.

Figure S11. Catalytic performance of the different ZrS loaded SAPO-34 materials.

Catalyst	Temp (°C)	P (bar)	GHSV (ml/h/gcat)	Conv (%)	Sel ^a CO (%)	Sel ^a C ₁ (%)	Sel ^a C ₂ - C ₄ = (%)	STY _{C2-C4=} (mmol/g _{ca} t/h)	Ref ^c
In ₂ O ₃ -ZrO ₂ /SAPO-34	400	30	9000	36	85	1	12	4.1	9
In ₂ O ₃ -ZrO ₂ /SAPO-34	400	15	12000	22	90	1	9	2.6	15
ZnGa ₂ O ₄ /SAPO-34	370	30	5400	13	49	N/A ^b	46	3.6	16
In ₂ O ₃ -ZrO ₂ /SAPO-34	400	30	9000	36	85	1	12	4.1	17
InZr/SAPO-34	380	30	9000	26	64	1	27	7.1	18
ZnZrO ₂ /Zn-SAPO-34	380	20	3600	21	27	10	51	4.2	19
Fe ₂ O ₃ -KO ₂ /MOR ^d	375	30	5000	48	14	16	34	9.2	14
CuZnZr/Zn-SAPO-34	400	20	3000	20	59	6	25	1.6	20
In2O3-ZrO2/SAPO-5	300	30	4000	7	56	3	32	1.0	21
ZnO-Y2O3/SAPO-34	390	40	1800	28	85	0.3	13	0.7	22
In ₂ O ₃ -ZrO ₂ /SAPO-34	380	30	9000	17	55	0.7	37	6.1	46
ZnZrO2@Al2O3/SA PO-34	380	30	3500	21	45	1.3	41	3.4	47

Table S1. Comparison of the state of the art bifunctional catalyst for the CO_2 hydrogenation towards light olefins.

^a Total product selectivity.

^b Data not available. ^c Main text reference.

^d Without CO cofeeding.

	S _{BET} (m ² /g)	S _{micro} * (m²/g)	V _{total} ** (ml/g)	V _{micro} *** (ml/g)
SAPO-34	770	762	0.28	0.27
ZrS/SAPO-34	511	496	0.2	0.18

Table S2: Surface area (BET) and micropore analysis of SAPO-34 and Zr/SAPO-34.

* Smicro= SBET - Smeso/ex

** Single point adsorption total pore volume @ p/p°=0.95

*** From N₂ adsorption isotherm using the t-plot method

Table S3: Acidity quantification from NH₃ TPD of the SAPO-34 and ZrS/SAPO-34 materials.

	NH3 desorbed/ma ss (μmol/g)	NH₃ desorbed/ SBET (µmol/m2)
SAPO-34	666.33	0.865
ZrS/SAPO-34	430.01	0.842
ZrS/SAPO-34- Water treatment	589.88	1.154

Olefin mass yield (%)									
	WATER	C2=	C3=	C4=	C5=	SUM			
SAPO-34	YES	0.04	0.22	0.27	0.21	0.73			
ZrS/SAPO-34	YES	0.04	0.25	0.53	0.42	1.23			
SAPO-34	NO	0.04	0.11	0.02	0.02	0.19			
ZrS/SAPO-34	NO	0.06	0.08	0.01	0.06	0.21			

Table S4: Mass yield (%) to the different C_2 - C_5 olefins obtained in the 1-Octene cracking experiments for the SAPO-34 and ZrS/SAPO-34 materials after 2 hours on the stream.

Table S5: Product distribution of control experiment with Ethylene co-fed with ¹³CO on SAPO-

34 after 2 hours on the reaction stream.

Sel C ₁	Sel C ₂	Sel C ₃	Sel C ₃₌	Sel C ₄	Sel C ₄₌	Sel C ₅	Sel C ₅₌	Sel C ₆	Sel C ₆₌
(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1.82	13.93	26.26	34.87	2.31	7.17	1.23	8.48	0.35	3.63

Figure S1. HAADF-STEM images of the ZrS/SAPO-34 material showing several coated particles.

Figure S2. HAADF-STEM elemental analysis of the ZrS/SAPO-34. (A) HAADF-TEM image of the ZrS/SAPO-34. (B) Elemental composition of the areas in the yellow boxes of Figure S1.A. (C) Zr and S elemental profile alongside the gree line of Figure S1.A.

Figure S3. Nitrogen adsorption-desorption isotherms of Zr/SAPO-34 materials.

Figure S4. X-Ray diffraction (XRD) patterns of SAPO-34 and Zr/SAPO-34.

Figure S5. TEM images of the different ZrS loaded SAPO-34 materials. (A, B, C) TEM image of 0.5xZrS/SAPO-34. (D, E, F) TEM images of ZrS/SAPO-34. (G, H, I) TEM image of 2xZrS/SAPO-34.

Figure S6. ³¹P magic angle spinning (MAS, 20KHz) solid-state nuclear magnetic resonance spectra of (a) fresh H-SAPO, (b) post-reacted SAPO, (c) fresh ZrS/SAPO-34, (d) fresh ZrS/SAPO-34 after boiling in water for 12 hours, and (e) post-reacted ZrS/SAPO-34. The slight difference between fresh and spent sample is due to the deposition of coke after the reaction. Post-reacted materials were prepared after the hydrogenation of carbon dioxide over for 50 hours.

Figure S7. 2D ²⁷Al multiple-quantum (MQ) magic angle spinning (MAS, 20KHz) solid-state nuclear magnetic resonance spectra of (a) fresh H-SAPO, (b) post-reacted SAPO, (c) fresh ZrS/SAPO-34, (d) fresh ZrS/SAPO-34 after boiling in water for 12 hours, and (e) post-reacted ZrS/SAPO-34. Post-reacted materials were prepared after the hydrogenation of carbon dioxide for 50 hours.

Figure S8. HAADF-STEM image and elemental analysis of the stand-alone ZrS catalyst.

Figure S9. Catalytic performance of the different configurations for the multifunctional materials after a TOS of 50 h. Reaction conditions: $375 \ ^{0}C$, 30 bar, $H_2/CO_2 = 3$, and 5000 mL·g⁻¹·h⁻¹. ZrS states for bulb ZS, ZrS/SAPO-34 states for ZrS coated SAPO-34, ZrS for physically mixed ZrS and SAPO-34 and ZrS/SiO₂ for ZrS impregnated SiO₂.

Figure S10. ¹³C direct excitation MAS solid-state NMR spectra of post-reacted SAPO material trapped organic products after the control reaction involving the mixture of ¹³CO, ethylene and hydrogen for 6 hours at 375^oC and 30 bars (MAS= magic angle spinning=20kHz, NS=number of scans=1408, recycle delay=4 seconds).

Figure S11. Catalytic performance of the different ZrS loaded SAPO-34 materials after a TOS of 50 h. Reaction conditions: $375 \ ^{0}$ C, 30 bar, $H_{2}/CO_{2} = 3$, and $5000 \ mL \cdot g - 1 \cdot h - 1$.