Supporting Information

Trace Amount of Cu(OAc)₂ Boosting Efficiency on the Cumene Oxidation

Catalyzed by Carbon Nanotubes Washed with HCl

Jie Deng^{1†}, Yuhang Li^{2†}, Yonghai Cao^{1*}, Hongjuan Wang¹, Hao Yu¹, Qiao Zhang²,

Jiangliang Zuo², Feng Peng^{2*}

¹ School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou,

Guangdong, 510640, China

² Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.

† These authors contribute equally.

* Tel. & Fax: +86 20 8711 4916.

E-mail address: meyhcao@scut.edu.cn (Y. Cao); fpeng@gzhu.edu.cn (F. Peng)

1. Supplemental Tables

Metal impurity	Content (ppm)
Fe	4268
Ni	0
Co	0
Zn	0
Mg	0
Ca	0

Table S1 The content of metal impurities in pCNTs from ICP-AAS test.

	(5	
Sample -	Elemental distribution (at.%)		
	С	0	Cl
pCNTs	98.9	1.1	-
CNTs	98.55	1.38	0.07
CNT1	97.61	2.39	-
CNT2	98.37	1.63	-
CNT3	97.58	2.35	0.07

Table S2 Quantitative XPS analysis of the catalysts

Table S3 Cl element content of different carbon catalysts based on the X-Ray Fluorescence

1	•
anal	YSIS.

Catalyst	Cl element content (%)
pCNTs	0
CNTs	0.039

Entry p	Catalysts	s (mg)	Con. (%)
	pCNTs	CuCl ₂	Cumene
1	100	0.8	54.8
2	100	3.45	66.4

Table S4 Catalytic performance in cumene oxidation catalyzed by pCNTs and CuCl₂.^[a]

^[a] Reaction conditions: 10 mL cumene, 25 mL min⁻¹ O₂, 80 °C, 8 h.

Catalysts	sts	Conversion (%)	
Entry	Br-CNTs (mg) ^[b]	Addition	Cumene
1	100	-	41.6
2	100	Cu(OAc) ₂ ^[c]	44.4

 Table S5 Cumene oxidation catalyzed by HBr treated CNTs. ^[a]

^[a] Reaction conditions: 10 mL cumene, 25 mL min⁻¹ O₂, 80 °C, 8 h. ^[b] Washed by HBr solution. ^[c] 0.01 mg.

2. Supplemental Figures

Figure S1 Cumene conversion *vs.* products selectivity distribution with and without Cu(OAc)₂. Reaction conditions: 10 mL cumene, 100 mg catalyst, 0.01 mg Cu(OAc)₂ (if applicable), 25 mL/min O₂, 80 °C.

Figure S2 TEM images of CNTs (a), CNT1 (b), CNT2 (c), CNTs3 (d).

Figure S3 XPS survey of the catalysts.

Figure S4 XPS survey and Cl detection of CNT4.

Figure S5 The correlation between the charge of Cu and reaction energy for the transformation from CHP to cumyl peroxy, corresponding to the upper part of Figure 3a in main text.

Figure S6 The interaction analysis based on independent gradient model (IGM) for carbon- H_2O -Cu. Isovalue is 0.003, comparing to Figure 3b in main text.