Supporting Information

Mechanism and Malleability of Glucose Dehydration to HMF: Entry Points and Water-Induced Diversions

Sebastian Meier¹

¹Department of Chemistry, Technical University of Denmark, Kemitorvet, Bulding 207, 2800 Kgs Lyngby (Denmark), E-mail: semei@kemi.dtu.dk

Supplementary Figures:

Figure S1. Effect of $CrCl_3 \cdot 6H_2O$ at the indicated concentrations on the spectral properties of 20 mg glucose in 600 µl d_6 -DMSO, 25 °C.

Figure S2. Mannose isotopomers formed from $[1^{-13}C]$ glucose indicate that mannose is predominantly formed from a reversible 1,2 H-shift ($[1^{-13}C]$ mannose at 94.5 ppm), and to a lesser degree by 1,2 C-shift ($[2^{-13}C]$ mannose at 73.6 ppm). Reaction conditions: 50 mg $[1^{-13}C]$ glucose, 2.5 mg CrCl₃·6H₂O, 550 µl d_6 -DMSO, after 20 hours at 110 °C.

Figure S3. HMF isotopomer distributions in ¹³C NMR spectra upon Cr^{III} catalysis in DMSO and water. Cr^{III} catalysis showed approximately twofold lower propensity for 1,2 C-shift in water than in DMSO. Reaction conditions: 30 mg [1-¹³C] glucose, 2.5 mg CrCl₃·6H₂O, 550 μ l *d*₆-DMSO or D₂O, 100 °C for 20 hours.

Figure S4. Spin-lattice relaxation time T₁ for protons (measured by inversion-recovery method on a 800 MHz instrument at 303 K) in THA and HMF in the presence of 2.5 mg CrCl₃·6H₂O **in** 550 μ l *d*₆-DMSO or D₂O with the indicated compositions. Different trends in relaxation time T₁ indicate different binding behavior of the two molecules to the paramagnetic Cr^{III} center in response to altered solvent composition.

Figure S5. Time series of ¹³C NMR spectra displaying reaction progress from [1-13C] to HMF via (4R,5R)-4-hydroxy-5-hydroxymethyl-4,5-dihydrofuran-2-carbaldehyde. Reaction conditions: 30 mg [1-¹³C] glucose, 2.5 mg CrCl₃·6H₂O at 110 °C in 550 μ l d₆-DMSO.

Figure S6. Time series of ¹H NMR spectra displaying the reduced formation of anhydrosugars (anhydroglucofuranose, AGF and anhydroglucopyranose, AGP) in the presence of water at 15% (middle) and 30% (bottom) volume ratios. Reaction conditions: 50 mg glucose, 2.5 mg CrCl₃·6H₂O in 570 μ l *d*₆-DMSO, 130 °C.

Figure S7. Time series of ¹H NMR spectra displaying the slower formation of HMF and emergence of THA in the presence of water at 15% (middle) and 30% (bottom) volume ratios. Reaction conditions: 50 mg glucose, 2.5 mg CrCl₃·6H₂O in 570 μ l *d*₆-DMSO, 130 °C.

Figure S8. Series of ¹³C spectra for the hydrothermal dehydration of [1-¹³C] glucose at varying water content. Reaction conditions: 30 mg [1-¹³C] glucose, 3.5 mg CrCl₃·6H₂O, 550 μ l total volume of *d*₆-DMSO and D₂O, 110 °C. AGF and AGP are anhydrosugars as shown in Figure S6.

Figure S9. Integrals for the time series of the ¹H NMR spectra in the presence of 30% (v/v) water. Reaction conditions: 50 mg glucose, 2.5 mg CrCl₃·6H₂O in 570 μ l *d*₆-DMSO, 130 °C.

Figure S10. Quantitative ¹³C NMR spectra displaying the product composition from glucose at varying solvent composition. AGF and AGP are anhydrosugars. FA denotes formic acid. Samples are identical to main text Figure 8.

Figure S11. ¹H NMR spectra identifying THA formation at increasing water content from glucose by AlCl₃. Reaction conditions: 30 mg glucose, 3 mg AlCl₃·6H₂O at 100 °C in 550 μ l d₆-DMSO/D₂O with the indicated composition (v/v).

Figure S12. ¹H NMR spectra identifying THA formation at increasing water content from glucose by $InCl_3$. Reaction conditions: 30 mg glucose, 3 mg $InCl_3$ at 100 °C in 550 $\mu I d_6$ -DMSO/D₂O with the indicated composition (v/v).

Figure S13. ¹H NMR spectra identifying THA formation at from glucose catalyzed by CrCl₃ in different solvent systems. FA denotes formic acid. Reaction conditions: 30 mg glucose, 3 mg CrCl₃·6H₂O at 100 °C in 400 μ l d₆-DMSO/170 μ l D₂O.