Supporting Information

Semi-Rational Hinge Engineering: Modulating the Conformational Transformation of Glutamate Dehydrogenase for Enhanced Reductive Amination Activity towards Non-Natural Substrates

Authors and Affiliation:
Xinjian Yin†, Yayun Liu, Lijun Meng, Haisheng Zhou, Jianping Wu,* and Lirong Yang,*

Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China

Corresponding authors:
*E-mail: wjp@zju.edu.cn
*E-mail: lryang@zju.edu.cn
† Present address: School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China

Contents List

Figure S1. PPO catalytic activity of the positive mutants acquired in error-prone PCR based directed evolution
Figure S2. Back mutation analysis of multi-residues substituted mutants acquired in error-prone PCR based directed evolution
Figure S3. Back mutation analysis of multi-residues substituted mutants from library C and D
Figure S4. Distance-K137/A291 difference between the “open” and “closed” subunits of PpGluDH protein
Figure S5. Pre-column derivatization HPLC analysis of ee value of the formed L-Phosphinothricin
Figure S6. Pre-column derivatization HPLC analysis of ee value of the formed L-Homophenylalanine

Figure S7. Pre-column derivatization HPLC analysis of ee value of the formed L-2-aminobutyric acid

➢ **Hinge engineering of active-site tailored GluDHs**

- Supplementary data:
 - Table S1. The information of active-site tailored GluDHs
 - Figure S8. Amino acid sequence alignment of GluDHs
 - Figure S9. The location of the targeted residue in the three-dimensional structure of GluDHs
 - Figure S10. The screening result of Mutagenesis libraries.

- **Figure S11.** Schematic of saturation mutagenesis libraries construction using the One-step Cloning Kit

- **The information of the coenzyme regeneration enzymes used in this study**

- **The primers used in this study**
 - Table S2. The primers for error-prone PCR
 - Table S3. The primers for saturation mutagenesis libraries construction
 - Table S4. The primers for back mutation analysis

- Figure S12. SDS-PAGE analysis of purified *PpGluDH* wild type (WT) and mutants.
- Figure S13. Plots for the determination of *NH_4^+* and NADPH saturation values
- Figure S14. Michaelis-Menten plots for the kinetics of the hinge-engineered mutants with PPO
- Figure S15. Mass spectrum (MS) of the synthesized substrate
 - 2-oxo-4-[(hydroxy)(methyl)phosphinyl]butyric acid (PPO)
- Figure S16. NMR spectra of the synthesized substrate
 - 2-oxo-4-[(hydroxy)(methyl)phosphinyl]butyric acid (PPO)
- Figure S17. Mass spectrum (MS) of the synthesized substrate 2-oxoheptanoic acid
- Figure S18. NMR spectra of the synthesized substrate 2-oxoheptanoic acid
- Figure S19. Mass spectrum (MS) of the synthesized substrate 2-oxooctanoic acid
- Figure S20. NMR spectra of the synthesized substrate 2-oxooctanoic acid
- Figure S21. Mass spectrum (MS) of the synthesized substrate 2-oxononanoic acid
- Figure S22. NMR spectra of the synthesized substrate 2-oxononanoic acid

➢ **Purification process of the formed L-amino acids**

- Figure S23. Mass spectrum (MS) of the purified L-phosphinothricin
- Figure S24. NMR spectra of the purified L-phosphinothricin
- Figure S25. Mass spectrum (MS) of the purified L-2-aminobutyric acid
- Figure S26. NMR spectra of the purified L-2-aminobutyric acid
- Figure S27. Mass spectrum (MS) of the purified L-homophenylalanine
- Figure S28. NMR spectrum of the purified L-homophenylalanine
Figure S1. PPO catalytic activity of the positive mutants acquired in error-prone PCR based directed evolution. Relative activity is expressed as a percentage of wild type *PpGluDH* specific volume activity (0.11 U/mL) under the experimental conditions.

Figure S2. Back mutation analysis of multi-residues substituted mutants acquired in error-prone PCR based directed evolution. Relative activity is expressed as the percentage of wild type *PpGluDH* specific volume activity (0.11 U/mL) in the experimental conditions.
Figure S3. Back mutation analysis of multi-residues substituted mutants from library C and D. (A) library C; (B) library D. Relative activity is expressed as the percentage of wild type *PpGluDH* specific volume activity (0.11 U/mL) in the experimental conditions.
Figure S4. Distance-K137/A291 difference between the “open” and “closed” subunits of *Pp*GluDH protein. The substrate-binding domain is represented in yellow, the cofactor-binding domain is represented in blue and the hinge is represented in green.
Figure S5. Pre-column derivatization HPLC analysis of ee value of the formed L-phosphinothricin. (A) HPLC spectrum of the racemic D,L-phosphinothricin (D,L-PPT) standard sample. (B) HPLC spectrum of the formed product in final reaction mixture of the batch reaction.
Figure S6. Pre-column derivatization HPLC analysis of ee value of the formed L-homophenylalanine. (A) HPLC spectrum of the racemic D,L-homophenylalanine standard sample. (B) HPLC spectrum of the formed L-homophenylalanine in final reaction mixture of the batch reaction.
Figure S7. Pre-column derivatization HPLC analysis of ee value of the formed L-2-aminobutyric acid. (A) HPLC spectrum of the racemic D,L-2-aminobutyric acid standard sample. (B) HPLC spectrum of the formed L-2-aminobutyric acid in final reaction mixture of the batch reaction.

Hinge engineering of active-site tailored GluDHs- supplementary data

1) The information of selected active-site tailored GluDHs

In addition to PpGluDH-A167G, we also performed hinge engineering to other two active-site tailored GluDHs, including EcGluDH-A166G and CsGluDH-A164G. The detail information of these two active-site tailored GluDHs were listed in Table S1.[1]

Table S1. The information of active-site tailored GluDHs

<table>
<thead>
<tr>
<th>GluDHs</th>
<th>Source</th>
<th>Coenzyme specificity</th>
<th>Sequence Homology (%)</th>
<th>Active-site mutation</th>
<th>Activity (U/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PpGluDH-A167G</td>
<td>Pseudomonas putida</td>
<td>NADP(H)</td>
<td>100</td>
<td>A167G</td>
<td>14.9</td>
</tr>
<tr>
<td>EcGluDH-A166G</td>
<td>Escherichia. coli</td>
<td>NADP(H)</td>
<td>64.8</td>
<td>A166G</td>
<td>26.05</td>
</tr>
<tr>
<td>CsGluDH-A164G</td>
<td>Clostridium symbiosum</td>
<td>NAD(H)</td>
<td>53.4</td>
<td>A164G</td>
<td>2.61</td>
</tr>
</tbody>
</table>

a) The sequence homology was measured with the amino acid sequence of PpGluDH as reference.
b) The specific volume activity of the active-site tailored GluDHs toward PPO.

2) Saturation mutagenesis libraries design

The residues of EcGluDH-A166G and CsGluDH-A164G corresponding to PpGluDH’s Ile406 were targeted by multiple sequence alignment (Figure S8). As shown in homology model of EcGluDH and CsGluDH, the selected residues (Ile405 of EcGluDH and Val406 of CsGluDH) also located on the hinge structure (Figure S9). NNK codon degeneracy were used for the construction of saturation mutagenesis. In general, two focused libraries were constructed, namely, EcGluDH-A166G/I405X and CsGluDH-A164G/V406X.

Figure S8. Amino acid sequence alignment of GluDHs. Alignment was performed using the T-Coffee server (http://tcoffee.vital-it.ch/apps/tcoffee/do:regular) and displayed using Esprit (http://esprit.ibcp.fr). Ile406 (PpGluDH numbering) are marked with purple triangles.
Figure S9. The location of the targeted residue in the three-dimensional structure of GluDHs. (A) The homology model of *Pp*GluDH; (B) The three-dimensional structure of *Ec*GluDH (PDB ID: 3SBO); (C) The three-dimensional structure of *Cs*GluDH (PDB ID: 1BGV). The substrate-binding domain is represented in orange, the cofactor-binding domain is represented in blue and the hinge is represented in green. The Ile406 (*Pp*GluDH numbering) is represented as stick model with purple.

3) Mutagenesis libraries screening

High-throughput primary screening and HPLC rescreening were carried out with PPO as the substrate. As shown in Figure S10, positive mutants with significantly improved PPO-oriented activity were identified form the two libraries, suggesting the general applicability of the hinge engineering for enhancing reductive amination activity of GluDHs.

Figure S10. The screening result of Mutagenesis libraries. (A) Library *Ec*GluDH-A166G/I405X; Relative activity is expressed as the percentage of *Ec*GluDH-A166G specific volume activity (26.05 U/mL) in the experimental conditions; (B) Library *Cs*GluDH-A164G/V406X. Relative activity is expressed as the percentage of *Cs*GluDH-A164G specific volume activity (2.61 U/mL) in the experimental conditions.
References:

Figure S11. Schematic of saturation mutagenesis libraries construction using the One-step Cloning Kit
The information of the coenzyme regeneration enzymes used in this study.

1) Amino acid sequence of the glucose dehydrogenasea) used in this study:

\begin{verbatim}
MYPDLKGKVVAITGAASGLGKAMAIRFGKEQAKVVINYYSNKQDPNEVKEE
VIKAGGEEAVVQGDVTKEEDVKNIVQTIAKEFGTLDIMINNAGLENPVPSHEM
PLKDWDVKVIGTNLIGFLGSREAIKYFVENDIKGNNVIMSSVHEVIPWPLFVH
YAASKGGIKLMTRLALEYAPKGRVNNIGPGAIINTPIAEKFADPKQKADVES
MIPMYIGEPEEIAAVAAWLASKEASYVTGITLEAFADGMOMTLYPSFQAGRG*
\end{verbatim}

a)This glucose dehydrogenase was cloned from \textit{bacillus subtilis}168, and the E170 (glutamate) and Q252 (glutamine) were mutated to R(arginine) and L(leucine) respectively for the improvement of thermostability.[1]

2) Amino acid sequence of the alcohol dehydrogenaseb) used in this study:

\begin{verbatim}
MKGFAMLSIGKVWIEKEKPAPGPFDAIVRPLAVAPCTSDIHTVFEGAIGERHN
MILGHEAVGEVVEVGVSEVKDFKPGRVVVPAITPDWRTSEVQRGYHQHSGG
MLAGWKFSNVKDGFGEFFHVNDAMNLHLPKEIPLEAAVMIPDMMTTGF
HGAELADIELGATVAVGLIGPVLMAVAGAKLRAGRIAVGSRPCVDAAK
YGATDIVNYKDPIESQIMNLTEKGVDAAIAGGNADIMATAVKIVKPGGTIA
NVNYFGGEVELPVPRLWEWGCMAHKTIKGGCPGGRRLMERLIDLFYKRV
DPSKLVTNYVRFQDNETIAFMLMKDKPKDELKPVVILA
\end{verbatim}

b)This alcohol dehydrogenase was cloned from \textit{Thermoanaerobacter brockii} (Protein accession no: WP041589967.1).

References:

The primers used in this study

Table S2. The primers used for error-prone PCR

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequences (5’ to 3’)*</th>
<th>Restriction sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PpGluDH-F-BamHI</td>
<td>CGCGGATCCATGTCTACCATGATCGAATCTG</td>
<td>BamHI</td>
</tr>
<tr>
<td>PpGluDH-R-HindIII</td>
<td>CCCAAGCTTTTCAGACCACGCCCCTGAGCCA</td>
<td>HindIII</td>
</tr>
</tbody>
</table>

*the restriction site is underlined.

Table S3. The primers used for saturation mutagenesis libraries construction

<table>
<thead>
<tr>
<th>Category</th>
<th>Primers</th>
<th>Sequence (5’ to 3’)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation-R</td>
<td>K402X-F</td>
<td>TGGACACGCNNKCTGCACAACATCATGCAGTC</td>
</tr>
<tr>
<td></td>
<td>I406X-F</td>
<td>TGCACAACNNKATGCAGTCGATTCCACATGC</td>
</tr>
<tr>
<td></td>
<td>I410X-F</td>
<td>TGCAGTCGNNKCAACATGCAGTCGACTA</td>
</tr>
<tr>
<td></td>
<td>A379X/L383X-F</td>
<td>GCGGTANDTGTGTCGGGCNDTGAAATGTCGAGAACGCCAT</td>
</tr>
<tr>
<td></td>
<td>T121X/L123X-F</td>
<td>TCGCTGNDTTCGNDTCCCATGGCGGCGGCAAGGG</td>
</tr>
<tr>
<td>Mutation-R</td>
<td>K402X-R</td>
<td>TTGTGCAGMNNGCTGTCACCACCGCCGCC</td>
</tr>
<tr>
<td></td>
<td>I406X-R</td>
<td>GACTGCATMNNGTTCGTACGCTTGGTCACA</td>
</tr>
<tr>
<td></td>
<td>I410X-R</td>
<td>GCAATGTCGNNCAGCTGATGATTGTCGACA</td>
</tr>
<tr>
<td></td>
<td>A379X/L383X-R</td>
<td>CATTTCAHNCGCCCGACACAHNTACCGCCCGCATTGGAGG</td>
</tr>
<tr>
<td></td>
<td>T121X/L123X-R</td>
<td>CATGGGAHNCGAAHNCAGCGAGTTTCTGAACACCT</td>
</tr>
<tr>
<td>Aid primers</td>
<td>Aid-F</td>
<td>TGAGATCCGGCCTGCTAACAAA</td>
</tr>
<tr>
<td></td>
<td>Aid-R</td>
<td>TTGTGTTAGCACGGGATCTCA</td>
</tr>
</tbody>
</table>

* underlined codon encodes desired amino acid substitution
Table S4. The primers used for back mutation analysis

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequences (5’ to 3’)a</th>
<th>Mutation (sites)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PpGluDH-V29A-F</td>
<td>ACCAGGGCCGCAAGAAGGTTGCTGCAGCCACC</td>
<td>Val→Ala (29)</td>
</tr>
<tr>
<td>PpGluDH-V29A-R</td>
<td>ACCTCCTCTGGCCCTTGGAATTCCCACCGC</td>
<td>Met→Val (55)</td>
</tr>
<tr>
<td>PpGluDH-M55V-F</td>
<td>TGGTGGTCAGCCCATGTTGCAAGCCGGCTTGCTGAGCTL</td>
<td>Lys→Met (74)</td>
</tr>
<tr>
<td>PpGluDH-M55V-R</td>
<td>GGCTGACACAGGCTGAGGGATGCACCGGC</td>
<td>Gln→Arg (76)</td>
</tr>
<tr>
<td>PpGluDH-K74M-F</td>
<td>ACCAGGGCATGGTGGCAGTCAACCGGGCTGAGCT</td>
<td>Val→Ala (102)</td>
</tr>
<tr>
<td>PpGluDH-K74M-R</td>
<td>ACCCTCAGGCAAACCTCAGGCTGAGCTGAAGT</td>
<td>Phe→Tyr (219)</td>
</tr>
<tr>
<td>PpGluDH-Q76R-F</td>
<td>CGGTGACCAAGCGACCTTGGGCTAGCTGAGCA</td>
<td>Tyr→His (270)</td>
</tr>
<tr>
<td>PpGluDH-Q76R-R</td>
<td>CAGCTTCTGGAGGCTGAGCTGAGCTGAGCTGAGCA</td>
<td>Leu→Pro (354)</td>
</tr>
<tr>
<td>PpGluDH-V102A-F</td>
<td>AGCCGCTGCAGCAACCTCAGGCTGAGCTGAAGT</td>
<td>Ala→Ile (379)</td>
</tr>
<tr>
<td>PpGluDH-V102A-R</td>
<td>CAGCTTCTGGAGGCTGAGCTGAGCTGAGCTGAGCA</td>
<td>Ala→Ser (379)</td>
</tr>
<tr>
<td>PpGluDH-V219Y-F</td>
<td>GGTGTTGCTGAGCCCATGTTGCAAGCTTGGCTGAC</td>
<td>Ala→Val (379)</td>
</tr>
<tr>
<td>PpGluDH-V219Y-R</td>
<td>GGTGTTGCTGAGCCCATGTTGCAAGCTTGGCTGAC</td>
<td>Ala→Phe (379)</td>
</tr>
<tr>
<td>PpGluDH-Y270H-F</td>
<td>GTACCTTCTGGAGGCTGAGCTGAGCTGAGCTGAGCA</td>
<td>Ala→Ty (379)</td>
</tr>
<tr>
<td>PpGluDH-Y270H-R</td>
<td>GTACCTTCTGGAGGCTGAGCTGAGCTGAGCTGAGCA</td>
<td>Ala→Cys (379)</td>
</tr>
<tr>
<td>PpGluDH-L354P-F</td>
<td>GCAGCTTCTGGAGGCTGAGCTGAGCTGAGCTGAGCA</td>
<td>Leu→Tyr (383)</td>
</tr>
<tr>
<td>PpGluDH-L354P-R</td>
<td>GCAGCTTCTGGAGGCTGAGCTGAGCTGAGCTGAGCA</td>
<td>Leu→Cys (383)</td>
</tr>
<tr>
<td>PpGluDH-I406T-F</td>
<td>GTACCTTCTGGAGGCTGAGCTGAGCTGAGCTGAGCA</td>
<td>Leu→Ser (383)</td>
</tr>
<tr>
<td>PpGluDH-I406T-R</td>
<td>GTACCTTCTGGAGGCTGAGCTGAGCTGAGCTGAGCA</td>
<td>Thr→Ser (121)</td>
</tr>
<tr>
<td>PpGluDH-L383Y-F</td>
<td>TGTGAGGCTGAGGCTGAGCTGAGCTGAGCTGAGCA</td>
<td>Thr→Asn (121)</td>
</tr>
<tr>
<td>PpGluDH-L383Y-R</td>
<td>TGTGAGGCTGAGGCTGAGCTGAGCTGAGCTGAGCA</td>
<td>Thr→Val (121)</td>
</tr>
</tbody>
</table>
PpGluDH-T121I-F ACTCGCTGATTTGCCTGCCATGGGCGGCG
PpGluDH-T121I-R GGCAGCGAAATCAGCGAGTTCTTGAAACACC
PpGluDH-L123H-F TGACCTCGCATCCCATGGGCGGCGCAAGG
PpGluDH-L123H-R CCCATGGGATGCGAGGTCAGCGAGTTCTTG
PpGluDH-L123Y-F TGACCTCGTATCCCATGGGCGGCGGCAAGG
PpGluDH-L123Y-R CCCATGGGATACGAGGTCAGCGAGTTCTTG
PpGluDH-L123S-F TGACCTCGAGTCCCATGGGCGGCGGCAAGG
PpGluDH-L123S-R CCCATGGGACTCGAGGTCAGCGAGTTCTTG
PpGluDH-L123F-F TGACCTCGTTTCCCATGGGCGGCGGCAAGG
PpGluDH-L123F-R CCCATGGGAAACGAGGTCAGCGAGTTCTTG

* underlined codon encodes desired amino acid substitution
Figure S12. SDS-PAGE analysis of purified *PpGluDH* wild type (WT) and mutants. **Lane M** molecular weight marker, **Lane 1** purified wild type, **Lane 2** purified K402F, **Lane 3** purified I406F, **Lane 4** purified T121N/L123Y, **Lane 5** purified A379C/L383C, **Lane 6** purified A167G/A379S/L383Y.
Figure S13. Plots for the determination of NH₄⁺ and NADPH saturation values. (A) NH₄⁺; (B) NADPH.
A

Specific activity (U/mg) vs. PPO Concentration (M)

B

Specific activity (U/mg) vs. PPO Concentration (M)
Figure S14. Michaelis-Menten plots for the kinetics of the hinge-engineered mutants with PPO. (A) T121N/L123Y; (B) A379C/L383C; (C) I406F; (D) K402F. Kinetic parameters of K402F can’t be calculated because it’s K_m is too high.
Figure S15. Mass spectrum (MS) of the synthesized substrate 2-oxo-4-[hydroxy(methyl)phosphinyl]butyric acid (PPO). IT-TOF (ESI): \(m/z = 179.01 \), calcd. for \(\text{C}_5\text{H}_8\text{O}_5\text{P} \) [M]: 179.01.

Figure S16. NMR spectra of the synthesized substrate 2-oxo-4-[hydroxy(methyl)phosphinyl]butyric acid (PPO). A. \(^1\)H NMR; B. \(^{13}\)C NMR. \(^1\)H NMR (500 MHz, DMSO) \(\delta \) 10.30 (s, 2H), 3.06 – 2.91 (m, 2H), 1.89 – 1.71 (m, 2H), 1.33 (d, \(J = 14.1 \) Hz, 3H). \(^{13}\)C NMR (500 MHz, DMSO) \(\delta \) 195.22, 195.11, 162.56, 32.21, 32.19, 24.68, 23.93, 15.99, 15.25.
Figure S17. Mass spectrum (MS) of the synthesized substrate 2-oxoheptanoic acid (S8). IT-TOF (ESI): m/z=143.07, calcd. for C₇H₁₁O₃ [M]: 143.07.

Figure S18. NMR spectra of the synthesized substrate 2-oxoheptanoic acid (S8). A. ¹H NMR; B. ¹³C NMR. ¹H NMR (500 MHz, CDCl₃) δ 2.94 (t, J = 7.3 Hz, 2H), 1.78 – 1.58 (m, 2H), 1.41 – 1.23 (m, 4H), 0.99 – 0.83 (m, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 195.83, 160.04, 37.43, 31.02, 22.73, 22.29, 13.81.
Figure S19. Mass spectrum (MS) of the synthesized substrate 2-oxooctanoic acid (S9). IT-TOF (ESI): $m/z = 157.09$, calcd. for C$_8$H$_{13}$O$_3$ [M]: 157.09.

Figure S20. NMR spectra of the synthesized substrate 2-oxooctanoic acid (S9). A. 1H NMR; B. 13C NMR. 1H NMR (500 MHz, CDCl$_3$) δ 2.94 (t, $J = 7.3$ Hz, 2H), 1.72 – 1.56 (m, 2H), 1.41 – 1.20 (m, 6H), 0.89 (t, $J = 6.8$ Hz, 3H). 13C NMR (500 MHz, CDCl$_3$) δ 195.80, 160.21, 37.55, 31.39, 28.56, 23.00, 22.40, 13.97.
Figure S21. Mass spectrum (MS) of the synthesized substrate 2-oxononanoic acid (S10). IT-TOF (ESI): m/z=171.11, calcd. for C₉H₁₅O₃ [M]⁺: 171.10.

Figure S22. NMR spectra of the synthesized substrate 2-oxononanoic acid (S10). A. ¹H NMR; B. ¹³C NMR. ¹H NMR (500 MHz, CDCl₃) δ 2.94 (t, J = 7.3 Hz, 2H), 1.74 – 1.54 (m, 2H), 1.42 – 1.20 (m, 8H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 195.85, 159.88, 37.40, 31.56, 28.89, 28.86, 23.06, 22.56, 14.04.
Purification process of the formed L-amino acids

1) L-Phosphinothricin purification

a) When the PPO was almost exhausted, the reaction broth was heated to 75°C for 30 min;
b) Denatured enzyme protein was removed by centrifugation and filtration;
c) The ammonium ion was removed using an H-type weak cation exchange resin (D113);
d) The rustling mixture was adjusted to pH 1.5 using hydrochloric acid;
e) L-phosphinothricin was separated from the mixture using an H-type strong cation exchange resin (JK006) and eluted with ammonia;
f) The L-phosphinothricin-containing fractions were adjusted to pH 2.5 and concentrated under reduced pressure;
g) The L-phosphinothricin was crystallized in methanol + water mixture;
h) The crystal was collected and then dried under vacuum.

2) L-Homophenylalanine purification

a) At the end of the reaction, the reaction broth was adjusted to pH <1 using hydrochloric acid;
b) The insoluble impurities were removed by filtration;
c) The filtrate was then adjusted to pH 5.5 using NaOH;
d) The precipitated L-homophenylalanine was collected by filtration;
e) The filter cake was washed using ddH₂O for three times and then dried under vacuum.

3) L-2-Aminobutyric acid purification

The isolation and purification of L-2-aminobutyric acid were carried out using a protocol described previously.[2]

References:

Figure S23. Mass spectrum (MS) of the purified L-phosphinothricin. IT-TOF (ESI): \textit{m/z}=180.04, calcld. for $C_5H_{11}NO_4P\ [M]$: 180.14.

Figure S24. NMR spectra of the purified L-phosphinothricin. A. 1H NMR; B. 13C NMR. 1H NMR 1H NMR (500 MHz, D$_2$O) δ 4.45 (s, 3H), 3.35 (t, $J = 5.9$ Hz, 1H), 1.61 – 1.45 (m, 2H), 0.62 (t, $J = 7.5$ Hz, 3H). 13C NMR (500 MHz, D$_2$O) δ 174.30, 55.29, 27.12, 24.33, 15.06.
Figure S25. Mass spectrum (MS) of the purified L-2-aminobutyric acid. IT-TOF (ESI): m/z = 102.06, calcd. for C₄H₉NO₂ [M]: 102.06.

Figure S26. NMR spectra of the purified L-2-aminobutyric acid. A. ¹H NMR; B. ¹³C NMR. ¹H NMR (500 MHz, D₂O) δ 4.45 (s, 3H), 3.35 (t, J = 5.9 Hz, 1H), 1.61 – 1.29 (m, 2H), 0.62 (t, J = 7.5 Hz, 3H). ¹³C NMR (500 MHz, D₂O) δ 174.83, 55.81, 23.65, 8.48.
Figure S27. Mass spectrum (MS) of the purified L-homophenylalanine. IT-TOF (ESI):
$m/z=178.09$, calcd. for $\text{C}_{10}\text{H}_{13}\text{NO}_2$ [M$^-\text{] : 108.09}$.

Figure S28. NMR spectrum of the purified L-homophenylalanine. ^1H NMR (500 MHz, D$_2$O) δ
7.90 – 6.43 (m, 5H), 3.66 (t, $J = 6.0$ Hz, 1H), 2.89 – 2.41 (m, 2H), 2.24 – 1.84 (m, 2H).