Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Semi-Rational Hinge Engineering: Modulating the

Conformational Transformation of Glutamate Dehydrogenase

for Enhanced Reductive Amination Activity towards Non-Natural Substrates

Authors and Affiliation:

Xinjian Yin[†], Yayun Liu, Lijun Meng, Haisheng Zhou, Jianping Wu,* and Lirong Yang,*

Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China

Corresponding authors:

*E-mail: wjp@zju.edu.cn

*E-mail: lryang@zju.edu.cn

[†] Present address: School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China

Contents List

Figure S1. PPO catalytic activity of the positive mutants acquired in error-prone PCR based directed evolution

Figure S2. Back mutation analysis of multi-residues substituted mutants acquired in error-prone PCR based directed evolution

Figure S3. Back mutation analysis of multi-residues substituted mutants from library C and D

Figure S4. Distance-K137/A291 difference between the "open" and "closed" subunits of PpGluDH protein

Figure S5. Pre-column derivatization HPLC analysis of ee value of the formed

L-Phosphinothricin

Figure S6. Pre-column derivatization HPLC analysis of ee value of the formed

L-Homophenylalanine

Figure S7. Pre-column derivatization HPLC analysis of *ee* value of the formed L-2-aminobutyric acid

> Hinge engineering of active-site tailored GluDHs- supplementary data:

Table S1. The information of active-site tailored GluDHs

Figure S8. Amino acid sequence alignment of GluDHs

Figure S9. The location of the targeted residue in the three-dimensional structure of GluDHs **Figure S10.** The screening result of Mutagenesis libraries.

Figure S11. Schematic of saturation mutagenesis libraries construction using the One-step Cloning Kit

> The information of the coenzyme regeneration enzymes used in this study

> The primers used in this study

 Table S2. The primers for error-prone PCR

 Table S3. The primers for saturation mutagenesis libraries construction

 Table S4. The primers for back mutation analysis

Figure S12. SDS-PAGE analysis of purified *Pp*GluDH wild type (WT) and mutants.
Figure S13. Plots for the determination of NH₄⁺ and NADPH saturation values
Figure S14. Michaelis-Menten plots for the kinetics of the hinge-engineered mutants with PPO
Figure S15. Mass spectrum (MS) of the synthesized substrate
2-oxo-4-[(hydroxy)(methyl)phosphinyl]butyric acid (PPO)
Figure S16. NMR spectra of the synthesized substrate
2-oxo-4-[(hydroxy)(methyl)phosphinyl]butyric acid (PPO)
Figure S17. Mass spectrum (MS) of the synthesized substrate 2-oxoheptanoic acid
Figure S18. NMR spectra of the synthesized substrate 2-oxoheptanoic acid
Figure S19. Mass spectrum (MS) of the synthesized substrate 2-oxooctanoic acid
Figure S20. NMR spectra of the synthesized substrate 2-oxooctanoic acid
Figure S21. Mass spectrum (MS) of the synthesized substrate 2-oxoonanoic acid
Figure S22. NMR spectra of the synthesized substrate 2-oxononanoic acid

> Purification process of the formed L-amino acids

Figure S23. Mass spectrum (MS) of the purified L-phosphinothricin
Figure S24. NMR spectra of the purified L-phosphinothricin
Figure S25. Mass spectrum (MS) of the purified L-2-aminobutyric acid
Figure S26. NMR spectra of the purified L-2-aminobutyric acid
Figure S27. Mass spectrum (MS) of the purified L-homophenylalanine
Figure S28. NMR spectrum of the purified L-homophenylalanine

Figure S1. PPO catalytic activity of the positive mutants acquired in error-prone PCR based directed evolution. Relative activity is expressed as a percentage of wild type PpGluDH specific volume activity (0.11 U/mL) under the experimental conditions.

Figure S2. Back mutation analysis of multi-residues substituted mutants acquired in error-prone PCR based directed evolution. Relative activity is expressed as the percentage of wild type PpGluDH specific volume activity (0.11 U/mL) in the experimental conditions.

Figure S3. Back mutation analysis of multi-residues substituted mutants from library C and D. (A) library C; (B) library D. Relative activity is expressed as the percentage of wild type PpGluDH specific volume activity (0.11 U/mL) in the experimental conditions.

Figure S4. Distance-K137/A291 difference between the "open" and "closed" subunits of PpGluDH protein. The substrate-binding domain is represented in yellow, the cofactor-binding domain is represented in blue and the hinge is represented in green.

Figure S5. Pre-column derivatization HPLC analysis of *ee* value of the formed L-phosphinothricin. (A) HPLC spectrum of the racemic D,L-phosphinothricin (D,L-PPT) standard sample. (B) HPLC spectrum of the formed product in final reaction mixture of the batch reaction.

Figure S6. Pre-column derivatization HPLC analysis of *ee* value of the formed L-homophenylalanine. (A) HPLC spectrum of the racemic D,L-homophenylalanine standard sample. (B) HPLC spectrum of the formed L-homophenylalanine in final reaction mixture of the batch reaction.

Figure S7. Pre-column derivatization HPLC analysis of *ee* value of the formed L-2-aminobutyric acid. (A) HPLC spectrum of the racemic D,L-2-aminobutyric acid standard sample. (B) HPLC spectrum of the formed L-2-aminobutyric acid in final reaction mixture of the batch reaction.

Hinge engineering of active-site tailored GluDHs- supplementary data

1) The information of selected active-site tailored GluDHs

In addition to PpGluDH-A167G, we also performed hinge engineering to other two active-site tailored GluDHs, including *Ec*GluDH-A166G and *Cs*GluDH-A164G. The detail information of these two active-site tailored GluDHs were listed in Table S1.^[1]

GluDHs	Source	Coenzyme specificity	Sequence Homology (%) ^{a)}	Active-site mutation	Activity (U/mL) ^{b)}
PpGluDH-A167G	Pseudomonas	NADP(H)	100	A167G	14.9
	putida				
EcGluDH-A166G	Escherichia.	NADP(H)	64.8	A166G	26.05
	coli				
CsGluDH-A164G	Clostridium	NAD(H)	53.4	A164G	2.61
	symbiosum				

Table S1. The information of active-site tailored GluDHs

a) The sequence homology was measured with the amino acid sequence of *Pp*GluDH as reference.

b) The specific volume activity of the active-site tailored GluDHs toward PPO.

2) Saturation mutagenesis libraries design

The residues of EcGluDH-A166G and CsGluDH-A164G corresponding to PpGluDH's Ile406 were targeted by multiple sequence alignment (**Figure S8**). As shown in homology model of EcGluDH and CsGluDH, the selected residues (Ile405 of EcGluDH and Val406 of CsGluDH) also located on the hinge structure (**Figure S9**). NNK codon degeneracy were used for the construction of saturation mutagenesis. In general, two focused libraries were constructed, namely, EcGluDH-A166G/I405X and CsGluDH-A164G/V406X.

Figure S8. Amino acid sequence alignment of GluDHs. Alignment was performed using the T-Coffee server (http://tcoffee.vital-it.ch/apps/tcoffee/do:regular) and displayed using Esprit (http://espript.ibcp.fr). Ile406 (*Pp*GluDH numbering) are marked with purple triangles.

Figure S9. The location of the targeted residue in the three-dimensional structure of GluDHs. (A) The homology model of PpGluDH; (B) The three-dimensional structure of EcGluDH (PDB ID: 3SBO); (C) The three-dimensional structure of CsGluDH (PDB ID: 1BGV). The substrate-binding domain is represented in orange, the cofactor-binding domain is represented in blue and the hinge is represented in green. The Ile406 (PpGluDH numbering) is represented as stick model with purple.

3) Mutagenesis libraries screening

High-throughput primary screening and HPLC rescreening were carried out with PPO as the substrate. As shown in Figure S10, positive mutants with significantly improved PPO-oriented activity were identified form the two libraries, suggesting the general applicability of the hinge engineering for enhancing reductive amination activity of GluDHs.

Figure S10. The screening result of Mutagenesis libraries. (A) Library *Ec*GluDH-A166G/I405X; Relative activity is expressed as the percentage of *Ec*GluDH-A166G specific volume activity (26.05 U/mL) in the experimental conditions; (B) Library *Cs*GluDH-A164G/V406X. Relative activity is expressed as the percentage of *Cs*GluDH-A164G specific volume activity (2.61 U/mL) in the experimental conditions.

References :

[1] Yin, X J.; Liu, Y Y.; Meng, L J.; Zhou, H S.; Wu, J.; Yang, L R., Advanced Synthesis & Catalysis 2019, 361 (4), 803-812.

Figure S11. Schematic of saturation mutagenesis libraries construction using the One-step Cloning Kit

The information of the coenzyme regeneration enzymes used in this study.

1) Amino acid sequence of the glucose dehydrogenase^{a)} used in this study:

MYPDLKGKVVAITGAASGLGKAMAIRFGKEQAKVVINYYSNKQDPNEVKEE VIKAGGEAVVVQGDVTKEEDVKNIVQTAIKEFGTLDIMINNAGLENPVPSHEM PLKDWDKVIGTNLTGAFLGSREAIKYFVENDIKGNVINMSSVHEVIPWPLFVH YAASKGGIKLMTRTLALEYAPKGIRVNNIGPGAINTPINAEKFADPKQKADVES MIPMGYIGEPEEIAAVAAWLASKEASYVTGITLFADGGMTLYPSFQAGRG*

^{a)}This glucose dehydrogenase was cloned from *bacillus subtilis168*, and the E170 (glutamte) and Q252 (glutamine) were mutated to R(arginine) and L(leucine) respectively for the improvement of thermostability.^[1]

2) Amino acid sequence of the alcohol dehydrogenase^{b)} used in this study:

MKGFAMLSIGKVGWIEKEKPAPGPFDAIVRPLAVAPCTSDIHTVFEGAIGERHN MILGHEAVGEVVEVGSEVKDFKPGDRVVVPAITPDWRTSEVQRGYHQHSGG MLAGWKFSNVKDGVFGEFFHVNDADMNLAHLPKEIPLEAAVMIPDMMTTGF HGAELADIELGATVAVLGIGPVGLMAVAGAKLRGAGRIIAVGSRPVCVDAAKY YGATDIVNYKDGPIESQIMNLTEGKGVDAAIIAGGNADIMATAVKIVKPGGTIA NVNYFGEGEVLPVPRLEWGCGMAHKTIKGGLCPGGRLRMERLIDLVFYKRV DPSKLVTHVFRGFDNIEKAFMLMKDKPKDLIKPVVILA

^{b)}This alcohol dehydrogenase was cloned from *Thermoanaerobacter brockii* (Protein accession no: WP_041589967.1).

References :

[1] E. Vazquez-Figueroa, J. Chaparro-Riggers, A. S. Bommarius, Chembiochem **2007**, 8, 2295-2301.

The primers used in this study

Table S2. The primers used for error-prone PCR						
Primers	Sequences (5'to 3') ^a	Restriction sites				
<i>Pp</i> GluDH-F- <i>Bam</i> HI	CGC <u>GGATCC</u> ATGTCTACCATGATCGAATCTG	BamHI				
<i>Pp</i> GluDH-R- <i>Hind</i> III	CCC <u>AAGCTT</u> TCAGACCACGCCCTGAGCCA	HindIII				

^{a)}the restriction site is underlined.

Table S3. The primers used for saturation mutagenesis libraries construction

Category	Primers	Sequence (5'to 3') ^a	
Mutation-R	K402X-F	TGGACAGC <u>NNK</u> CTGCACAACATCATGCAGTC	
	I406X-F	TGCACAAC <u>NNK</u> ATGCAGTCGATTCACCATGC	
	I410X-F	TGCAGTCG <u>NNK</u> CACCATGCATGCGTGCACTA	
	A379X/L383X-F	GGCGTA <u>NDT</u> GTGTCGGGGC <u>NDT</u> GAAATGTCGCAGAACGCCAT	
	T121X/L123X-F	TCGCTG <u>NDT</u> TCG <u>NDT</u> CCCATGGGCGGCGGCAAGGG	
Mutation-R	K402X-R	TTGTGCAG <u>MNN</u> GCTGTCCACTTCACCGGCCG	
	I406X-R	GACTGCAT <u>MNN</u> GTTGTGCAGCTTGCTGTCCA	
	I410X-R	GCATGGTG <u>MNN</u> CGACTGCATGATGTTGTGCA	
	A379X/L383X-R	CATTTC <u>AHN</u> GCCCGACAC <u>AHN</u> TACGCCGCCCGCATTGGAGG	
	T121X/L123X-R	CATGGG <u>AHN</u> CGA <u>AHN</u> CAGCGAGTTCTTGAACACCT	
Aid primers	Aid-F	TGAGATCCGGCTGCTAACAAA	
	Aid-R	TTTGTTAGCAGCCGGATCTCA	

^a underlined codon encodes desired amino acid substitution

Table S4. The primers used for back mutation analysis

<i>Pp</i> GluDH-T121I-F ACTCGCTG <u>ATT</u> TCGCTGCCCATGGGCGGCG		The $12(121)$	
<i>Pp</i> GluDH-T121I-R	GGCAGCGA <u>AAT</u> CAGCGAGTTCTTGAACACC	$\operatorname{Im} \rightarrow \operatorname{Ine}(121)$	
PpGluDH-L123H-FTGACCTCGCATCCCATGGGCGGCGGCAAGGPpGluDH-L123H-RCCCATGGGATGCGAGGTCAGCGAGTTCTTG		Leu→His (123)	
			PpGluDH-L123Y-F
PpGluDH-L123Y-R	CCCATGGGATACGAGGTCAGCGAGTTCTTG	$Leu \rightarrow 1yr(123)$	
PpGluDH-L123S-F	TGACCTCG <u>AGT</u> CCCATGGGCGGCGGCAAGG	Law (122)	
PpGluDH-L123S-R	CCCATGGG <u>ACT</u> CGAGGTCAGCGAGTTCTTG	$Leu \rightarrow Ser(123)$	
PpGluDH-L123F-F	TGACCTCG <u>TTT</u> CCCATGGGCGGCGGCAAGG	$I_{max} = D_{max}^{1} (122)$	
PpGluDH-L123F-R	F-R CCCATGGG <u>AAA</u> CGAGGTCAGCGAGTTCTTG		

^a underlined codon encodes desired amino acid substitution

Figure S12. SDS-PAGE analysis of purified *Pp*GluDH wild type (WT) and mutants. *Lane M* molecular weight marker, *Lane 1* purified wild type, *Lane 2* purified K402F, *Lane 3* purified I406F, *Lane 4* purified T121N/L123Y, *Lane 5* purified A379C/L383C, *Lane 6* purified A167G/A379S/L383Y.

Figure S13. Plots for the determination of NH₄⁺ and NADPH saturation values. (A) NH₄⁺; (B) NADPH.

Figure S14. Michaelis-Menten plots for the kinetics of the hinge-engineered mutants with PPO. (A) T121N/L123Y; (B) A379C/L383C; (C) I406F; (D) K402F. Kinetic parameters of K402F can't be calculated because it's *Km* is too high.

Figure S15. Mass spectrum (MS) of the synthesized substrate 2-oxo-4-[(hydroxy)(methyl)phosphinyl]butyric acid (PPO). IT-TOF (ESI): m/z=179.01, calcd. for $C_5H_8O_5P$ [M]⁻: 179.01.

FigureS16.NMRspectraofthesynthesizedsubstrate2-oxo-4-[(hydroxy)(methyl)phosphinyl]butyricacid(PPO).A.¹HNMR;B.¹³CNMR.¹HNMR(500 MHz, DMSO) δ 10.30 (s, 2H), 3.06 - 2.91 (m, 2H), 1.89 - 1.71 (m, 2H), 1.33 (d, J = 14.1 Hz,3H).¹³CNMR(500 MHz, DMSO) δ 195.22, 195.11, 162.56, 32.21, 32.19, 24.68, 23.93, 15.99,15.25.

Figure S17. Mass spectrum (MS) of the synthesized substrate 2-oxoheptanoic acid (S8). IT-TOF (ESI): m/z=143.07, calcd. for C₇H₁₁O₃ [M]⁻: 143.07.

Figure S18. NMR spectra of the synthesized substrate 2-oxoheptanoic acid (S8). A. ¹H NMR; B. ¹³C NMR ¹H NMR (500 MHz, CDCl₃) δ 2.94 (t, *J* = 7.3 Hz, 2H), 1.78 – 1.58 (m, 2H), 1.41 – 1.23 (m, 4H), 0.99 – 0.83 (m, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 195.83, 160.04, 37.43, 31.02, 22.73, 22.29, 13.81.

Figure S19. Mass spectrum (MS) of the synthesized substrate 2-oxooctanoic acid (S9). IT-TOF (ESI): m/z=157.09, calcd. for C₈H₁₃O₃ [M]⁻: 157.09.

Figure S20. NMR spectra of the synthesized substrate 2-oxooctanoic acid (S9). A. ¹H NMR; B. ¹³C NMR. ¹H NMR (500 MHz, CDCl₃) δ 2.94 (t, *J* = 7.3 Hz, 2H), 1.72 – 1.56 (m, 2H), 1.41 – 1.20 (m, 6H), 0.89 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 195.80, 160.21, 37.55, 31.39, 28.56, 23.00, 22.40, 13.97.

Figure S21. Mass spectrum (MS) of the synthesized substrate 2-oxononanoic acid (S10). IT-TOF (ESI): m/z=171.11, calcd. for C₉H₁₅O₃ [M]⁻: 171.10.

Figure S22. NMR spectra of the synthesized substrate 2-oxononanoic acid (S10). A. ¹H NMR; B. ¹³C NMR. ¹H NMR (500 MHz, CDCl₃) δ 2.94 (t, *J* = 7.3 Hz, 2H), 1.74 – 1.54 (m, 2H), 1.42 – 1.20 (m, 8H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 195.85, 159.88, 37.40, 31.56, 28.89, 28.86, 23.06, 22.56, 14.04.

Purification process of the formed L-amino acids

1) L-Phosphinothricin purification

- a) When the PPO was almost exhausted, the reaction broth was heated to 75°C for 30 min;
- b) Denatured enzyme protein was removed by centrifugation and filtration;
- c) The ammonium ion was removed using an H-type weak cation exchange resin (D113);
- d) The rustling mixture was adjusted to pH 1.5 using hydrochloric acid;
- e) L-phosphinothricin was separated from the mixture using an H-type strong cation exchange resin (JK006) and eluted with ammonia;
- f) The L-phosphinothricin-containing fractions were adjusted to pH 2.5 and concentrated under reduced pressure;
- g) The L-phosphinothricin was crystallized in methanol + water mixture;
- h) The crystal was collected and then dried under vacuum.

2) L-Homophenylalanine purification

- a) At the end of the reaction, the reaction broth was adjusted to pH <1 using hydrochloric acid;
- b) The insoluble impurities were removed by filtration;
- c) The filtrate was then adjusted to pH 5.5 using NaOH;
- d) The precipitated L-homophenylalanine was collected by filtration;
- e) The filter cake was washed using ddH₂O for three times and then dried under vacuum.

3) L-2-Aminobutyric acid purification

The isolation and purification of L-2-aminobutyric acid were carried out using a protocol described previously.^[2]

References :

[2] Tao, R.; Jiang, Y.; Zhu, F.; Yang, S., Biotechnology Letters 2014, 36 (4), 835-841.

Figure S23. Mass spectrum (MS) of the purified L-phosphinothricin. IT-TOF (ESI): m/z=180.04, calcd. for C₅H₁₁NO₄P⁻[M]⁻: 180.14.

Figure S24. NMR spectra of the purified L-phosphinothricin. A. ¹H NMR; B. ¹³C NMR. ¹H NMR ¹H NMR (500 MHz, D₂O) δ 4.45 (s, 3H), 3.35 (t, *J* = 5.9 Hz, 1H), 1.61 – 1.45 (m, 2H), 0.62 (t, *J* = 7.5 Hz, 3H).. ¹³C NMR (500 MHz, D₂O) δ 174.30, 55.29, 27.12, 24.33, 15.06.

Figure S26. NMR spectra of the purified L-2-aminobutyric acid. A. ¹H NMR; B. ¹³C NMR. ¹H NMR (500 MHz, D₂O) δ 4.45 (s, 3H), 3.35 (t, *J* = 5.9 Hz, 1H), 1.61 – 1.29 (m, 2H), 0.62 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (500 MHz, D₂O) δ 174.83, 55.81, 23.65, 8.48.

Figure S27. Mass spectrum (MS) of the purified L-homophenylalanine. IT-TOF (ESI): m/z=178.09, calcd. for C₁₀H₁₃NO₂ [M]⁻: 108.09.

Figure S28. NMR spectrum of the purified L-homophenylalanine. ¹H NMR (500 MHz, D₂O) δ 7.90 – 6.43 (m, 5H), 3.66 (t, *J* = 6.0 Hz, 1H), 2.89 – 2.41 (m, 2H), 2.24 – 1.84 (m, 2H).