Supporting Information for

Reactivity of a β -Diketiminate-Supported Magnesium Alkyl toward Small Molecules

Wenshan Ren,* Shaohui Zhang, Ziyi Xu, Hongyan Zhao, Xuebing Ma*

College of Chemistry and Chemical Engineering, Southwest University, Chongqing

400715, China

rws603@swu.edu.cn, zcj123@swu.edu.cn

TABLE OF CONTENTS

1.	Experimental section	S2
2.	Crystallographic Details	S14

EXPERIMENTAL SECTION

General Procedures. All reactions and manipulations were carried out under an atmosphere of dry dinitrogen with rigid exclusion of air and moisture using standard Schlenk or cannula techniques, or in a glove box. All organic solvents were freshly distilled from sodium benzophenone ketyl immediately prior to use. S₈ was purified by sublimation. { $[HC(C(Me)N-2,6^{-i}Pr_2C_6H_3)_2]Mg(^nBu)$ }¹ was prepared according to the literature method. All other chemicals were purchased from Aldrich Chemical Co. and Energy Chemical Co. and used as received unless otherwise noted. Caution! Most selenium compounds are toxic; care should be exercised to avoid contact with skin. All operations in this procedure should be conducted in a well-ventilated hood. Infrared spectra were obtained from KBr pellets on an Avatar 360 Fourier transform spectrometer. ¹H and ¹³C $\{^{1}H\}$ NMR spectra were recorded on a Bruker AV 600 spectrometer at 600 and 150 MHz, respectively. All chemical shifts were reported in δ units with reference to the residual protons of the deuterated solvents, which were internal standards, for proton and carbon chemical shifts. Melting points were measured on an X-6 melting point apparatus and were uncorrected. Elemental analyses were performed on a Vario EL elemental analyzer.

Preparation of { $[HC(C(Me)N-2,6^{-i}Pr_2C_6H_3)_2]Mg(\mu-S^nBu)$ }₂ (2). S₈ (0.032 g, 0.125 mmol) was added to a benzene (5 mL) solution of {[HC(C(Me)N-2,6- ${}^{i}Pr_{2}C_{6}H_{3}_{2}Mg(^{n}Bu)$ {2 (1; 0.500 g, 0.5 mmol) with stirring at room temperature. After stirring at room temperature for 10 h, the solution was filtered. The volume of the filtrate was reduced to 2 mL, and the compound 2 crystallized at room temperature in S2

2 days as colorless crystals. Yield: 0.405 g (76%). M.p.: 116-118 °C. ¹H NMR (600 MHz, C₆D₆): $\delta = 7.21$ (t, 2H, ${}^{3}J = 7.2$ Hz, phenyl H), 7.16 (benzene), 7.12 (d, 4H, ${}^{3}J =$ 7.2 Hz, phenyl H), 4.73 (s, 1H, HC {C(CH₃)N-2,6- $iPr_2C_6H_3$ }), 3.31 (m, 4H, CHMe₂), 2.47 (t, 2H, ${}^{3}J = 7.2$ Hz, SCH₂C₃H₇), 1.56-1.53 (m, 2H, SCH₂CH₂C₂H₅), 1.52 (s, 6H, $HC\{C(CH_3)N-2,6-iPr_2C_6H_3\}_2$, 1.34-1.31 (m, 2H, $SC_2H_4CH_2CH_3$), 1.21-1.16 (m, 24H, CH(CH₃)₂), 0.90 (t, 3H, ${}^{3}J$ = 7.2 Hz, Bu-CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (150 MHz, C_6D_6): $\delta = 169.07$ (HC{ $C(CH_3)$ -N-2,6-ⁱPr₂C₆H₃}), 145.53 (phenyl C), 142.44 (phenyl C), 126.8 (benzene), 125.22 (phenyl C), 123.65 (br, phenyl C), 94.53 $(HC{C(CH_3)N-2,6-iPr_2C_6H_3}_2), 37.34 (SCH_2C_3H_7), 31.55 (SCH_2CH_2C_2H_5), 28.28$ (CH(CH₃)₂), 28.02 (CH(CH₃)₂), 26.64 (CH(CH₃)₂), 24.38 (CH(CH₃)₂), 24.17 $(CH(CH_3)_2)$, 24.11 $(ArCH(CH_3)_2)$, 23.37 $(HC\{C(CH_3)N-2,6^{-i}Pr_2C_6H_3\}_2)$, 22.60 (SC₂H₄CH₂CH₃), 13.87 (Bu-CH₃) ppm. IR (KBr): *v* = 2957 (m), 2925 (m), 2865 (m), 1620 (m), 1544 (m), 1459 (s), 1433 (s), 1401 (s), 1363 (s), 1258 (m), 1172 (m), 1101 (m), 1018 (m), 929 (m), 790 (m) cm⁻¹. A reproducible microanalysis could not be obtained for the compound as the solvent molecule (benzene) in the crystal lattice were slowly lost upon isolation of the compoud as a dry crystalline solid. However, it is diffcult to completely remove them by placing crystalline samples of the compound under vaccum for several hours.

Preparation of [HC(C(Me)N-2,6-ⁱ**Pr**₂**C**₆**H**₃)₂]**Mg(Se**ⁿ**Bu)(THF) (3).** A mixture of Se₈ (0.079 g, 0.125 mmol) and {[HC(C(Me)N-2,6-ⁱ**P**r₂C₆**H**₃)₂]Mg(ⁿBu)}₂ (1; 0.500 g, 0.5 mmol) in benzene (5 mL) with a few drops of THF was stirred at room temperature for 10 h, then the solution was concentrated to dryness under vacuum.

Benzene (2 mL) was added to the residue, and then diffusion of n-hexane into the solution gave colorless crystals of 3. Yield: 0.480 g (74%). M.p.: 140-142 °C. ¹H NMR (600 MHz, C₆D₆): δ = 7.26 (s, 6H, phenyl H, overlapping peaks), 4.80 (s, 1H, $HC\{C(CH_3)N-2,6-iPr_2C_6H_3\}_2\}, 3.72$ (br, 4H, THF), 3.62-3.10 (m, 4H, CHMe₂), 2.19 (t, 2H, ${}^{3}J = 7.2$ Hz, SeCH₂C₃H₇), 1.65 (s, 6H, HC{C(CH₃)N-2,6- ${}^{i}Pr_{2}C_{6}H_{3}$ }), 1.57-1.52 (m, 6H, SeCH₂CH₂C₂H₅ + THF), 1.34-1.30 (m, 2H, SeC₂H₄CH₂CH₃), 1.29-1.19 (m, 24H, CH(CH₃)₂), 0.83 (t, 3H, ${}^{3}J = 7.2$ Hz, Bu-CH₃) ppm. ${}^{13}C{}^{1}H{}$ NMR (150 MHz, C₆D₆): $\delta = 168.63$ (HC{C(CH₃)-N-2,6-iPr₂C₆H₃}), 144.98 (phenyl C), 142.44 (phenyl C), 125.23 (phenyl C), 123.65 (br, phenyl C), 94.50 (HC{C(CH₃)N-2,6- $^{1}Pr_{2}C_{6}H_{3}$, 69.72 (THF), 39.19 (SeCH₂C₃H₇), 31.55 (SeCH₂CH₂C₂H₅), 28.28 (CH(CH₃)₂), 28.02 (br, CH(CH₃)₂), 25.04 (THF), 24.95 (CH(CH₃)₂), 24.22 (br, CH(CH₃)₂), 24.11 (CH(CH₃)₂), 23.82 (CH(CH₃)₂), 23.62 (HC{C(CH₃)N-2,6- $^{1}Pr_{2}C_{6}H_{3}$, 22.74 (SeC₂H₄CH₂CH₃), 13.63 (Bu-CH₃) ppm. IR (KBr): v = 2958 (m), 2926 (m), 2865 (m), 1621 (w), 1502 (s), 1458 (s), 1433 (s), 1402 (s), 1382 (s), 1308 (s), 1258 (m), 1179 (s), 1144 (s), 1077 (s), 1018 (m), 958 (m), 794 (m) cm⁻¹. Anal. Calcd for C₃₇H₅₈N₂OSeMg: C, 68.35; H, 8.99; N, 4.31. Found: C, 68.53; H, 9.08; N, 4.16.

Preparation of [HC(C(Me)N-2,6-ⁱ**Pr**₂**C**₆**H**₃)₂]**Mg(Se**₂ⁿ**Bu)(THF) (4). Method A.** This compound was obtained as yellow crystals from the reaction of {[HC(C(Me)N-2,6-ⁱ**P**r₂**C**₆**H**₃)₂]**Mg**(ⁿ**Bu**)}₂ (1; 0.500 g, 0.5 mmol) and Se₈ (0.158 g, 0.250 mmol) in benzene (5 mL) with a few drops of THF and recrystallization from a benzene/nhexane solution by a procedure similar to that described in the synthesis of 3. Yield:

0.408 g (56%). M.p.: 152-154 °C. ¹H NMR (60 ¹H NMR (600 MHz, C₆D₆): δ = 7.15 (br, 6H, phenyl H), 4.82 (s, 1H, $HC\{C(CH_3)N-2, 6^{-i}Pr_2C_6H_3\}_2$), 3.89 (m, 4H, THF), 3.32-3.24 (m, 4H, CHMe₂), 2.00 (t, 2H, ${}^{3}J = 7.2$ Hz, SeCH₂C₃H₇), 1.66 (m, 4H, THF), 1.65 (s, 6H, HC{C(CH₃)N-2,6- $Pr_2C_6H_3$ }), 1.54-1.51 (m, 2H, SeCH₂CH₂C₂H₅), 1.30-1.28 (m, 2H, SeC₂H₄CH₂CH₃), 1.24 (d, 12H, ${}^{3}J$ = 7.2 Hz, CH(CH₃)₂), 1.21 (d, 12H, ${}^{3}J$ = 7.2 Hz, CH(CH₃)₂), 0.79 (t, 3H, ${}^{3}J$ = 7.2 Hz, Bu-CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (150 MHz, C₆D₆): $\delta = 168.73$ (HC{C(CH₃)-N-2,6-ⁱPr₂C₆H₃}), 145.22 (phenyl C), 142.33 (phenyl C), 125.22 (phenyl C), 123.67 (br, phenyl C), 123.21 (phenyl C), 94.55 $(HC{C(CH_3)N-2,6-iPr_2C_6H_3}_2),$ 70.05 (THF), 32.51 $(SeCH_2C_3H_7),$ 31.55 (SeCH₂CH₂C₂H₅), 28.28 (CH(CH₃)₂), 28.05 (br, CH(CH₃)₂), 25.05 (THF), 24.33 $(CH(CH_3)_2)$, 24.24 $(CH(CH_3)_2)$, 24.11 $(CH(CH_3)_2)$, 23.98 $(CH(CH_3)_2)$, 23.03 $(HC{C(CH_3)N-2,6^{-i}Pr_2C_6H_3}_2)$, 22.75 $(SeC_2H_4CH_2CH_3)$, 13.46 $(Bu-CH_3)$ ppm. IR (KBr): v = 2958 (m), 2925 (m), 2866 (m), 1620 (m), 1549 (m), 1461 (m), 1441 (s), 1380 (s), 1321 (m), 1277 (m), 1178 (s), 1145 (s), 1057 (s), 933 (m), 792 (m) cm⁻¹. Anal. Calcd for C₃₇H₅₈N₂OSe₂Mg: C, 60.95; H, 8.02; N, 3.84. Found: C, 61.06; H, 8.15; N, 3.75.

Method B. Se₈ (0.061 g, 0.097 mmol) was added to a benzene (5 mL) solution of $[HC(C(Me)N-2,6^{-i}Pr_2C_6H_3)_2]Mg(Se^nBu)(THF)$ (**3**; 0.500 g, 0.775 mmol) with stirring at room temperature. After stirring at room temperature for 5 h, the solution was filtered. The volume of the filtrate was reduced to 2 mL, the crystals of **4** were isolated at room temperature in the glovebox after addition of a few drops of n-hexane. Yield: 0.333 g (59%).

Preparation of [HC(C(Me)N-2,6-ⁱPr₂C₆H₃)₂]Mg(SPh)(THF)•THF (5•THF). A

THF (2 mL) solution of PhSSPh (0.219 g, 1.0 mmol) was added to a THF (3 mL) solution of {[HC(C(Me)N-2,6-ⁱPr₂C₆H₃)₂]Mg(ⁿBu)}₂ (1; 0.500 g, 0.5 mmol) with stirring at room temperature. After the solution was stirred at room temperature for 2 h, the solution was filtered. The volume of the filtrate was reduced to 2 mL and cooled to -20 °C, yielding pale yellow crystals **5**•**THF**, which were isolated by filtration. Yield: 0.550 g (79%). ¹H NMR (600 MHz, C₆D₅N): δ = 7.28–7.20 (m, 6H, phenyl), 6.91 (d, 2H, *J*_{HH} = 7.2 Hz, phenyl), 6.77 (m, 3H, phenyl), 5.06 (s, 1H, *H*C{C(CH₃)NAr}₂), 3.63 (m, 8H, THF), 3.28 (m, 4H, C*H*Me₂), 1.82 (s, 6H, HC{C(CH₃)NAr}₂), 1.62 (m, 8H, THF), 1.25-1.11 (m, 24H, CH(CH₃)₂) ppm. The solid-state structures of the complex has been further confirmed by single crystal X-ray diffraction, which is identical to that reported.²

Oily PhSⁿBu can be isolated from the filtrate by silica gel chromatography (hexane). Yield: 0.46 g (68 %). ¹H NMR (CDCl₃): δ = 7.33-7.27 (m, 3H, phenyl *H*), 7.16 (t, 2H, ³J = 7.8 Hz, phenyl *H*), 2.92 (t, 2H, ³J = 7.2 Hz, CH₂), 1.66-1.60 (m, 2H, CH₂), 1.48-1.42 (m, 2H, CH₂), 0.92 (t, 2H, ³J = 7.2 Hz, CH₃). By ¹H NMR spectroscopy, the compound is spectroscopically identical to the previous report.³

Preparation of [HC(C(Me)N-2,6-ⁱ**Pr**₂**C**₆**H**₃)₂]**Mg(SePh)(THF)**•**THF (6**•**THF).** This compound was prepared as pale yellow crystals from the reaction of $\{[HC(C(Me)N-2,6-^{i}Pr_{2}C_{6}H_{3})_{2}]Mg(^{n}Bu)\}_{2}$ (**1**; 0.500 g, 0.5 mmol) and PhSeSePh (0.312 g, 1.0 mmol) in THF (5 mL) and recrystallization from a THF solution by a similar procedure as that in the synthesis of **5**•**THF**. Yield: 0.615 g (83%). ¹H NMR (600 MHz, C₆D₅N): δ = 7.25–7.17 (m, 6H, phenyl), 6.87 (m, 2H, phenyl), 6.74 (m, 3H, phenyl), 4.84 (s, 1H, *H*C{C(CH₃)NAr}₂), 3.57 (m, 8H, THF), 3.04 (m, 4H, C*H*Me₂), 1.67 (s, 6H, HC{C(C*H*₃)NAr}₂), 1.55 (m, 8H, THF), 1.24-1.07 (m, 24H, CH(C*H*₃)₂) ppm. The solid-state structures of the complex has been further confirmed by single crystal X-ray diffraction, which is identical to that reported.²

Oily PhSeⁿBu can be isolated from the filtrate by silica gel chromatography (hexane). Yield: 0.62 g (73%). ¹H NMR (CDCl₃): δ = 7.49 (m, 2H, phenyl), 7.26-7.24 (m, 3H, phenyl), 2.90 (t, 2H, ³*J* = 7.2 Hz, C*H*₂), 1.71-1.66 (m, 2H, C*H*₂), 1.46-1.40 (m, 2H, C*H*₂), 0.91 (t, 2H, ³*J* = 7.2 Hz, C*H*₃). By ¹H NMR spectroscopy, the compound is spectroscopically identical to the previous report.⁴

Preparation of [HC(C(Me)N-2,6-ⁱPr₂C₆H₃)₂]Mg(N(H)C(Ph)=CHC₃H₇)(DME) (7).

A benzene (2 mL) solution of PhCN (0.103 g, 1.0 mmol) was added dropwise to a benzene (3 mL) solution of { $[HC(C(Me)N-2,6-iPr_2C_6H_3)_2]Mg(^nBu)$ }₂ (1; 0.500 g, 0.5 mmol) with stirring at room temperature. After 1.5 h, the solution was filtered. The volume of the filtrate was reduced to 2 mL, the colorless crystals of 7 were isolated at room temperature in the glovebox after addition of a few drops of DME. Yield: 0.520 g (75%). M.p.: 98-100 °C. ¹H NMR (600 MHz, C₆D₆): δ = 7.28-7.27 (m, 2H, phenyl *H*), 7.16 (br, 4H, phenyl *H*), 7.10 (br, 2H, phenyl *H*), 6.88 (t, 1H, ³*J* = 7.2 Hz, phenyl *H*), 6.71 (m, 2H, phenyl *H*), 4.72 (s, 1H, *HC*{C(CH₃)N-2,6-iPr₂C₆H₃}₂), 4.29 (t, 1H, ³*J* = 6.6 Hz, C(Ph)=CHCH₃H₇), 3.25 (m, 4H, CHMe₂), 3.02 (m, 10H, DME), 2.32 (s, 1H, NH), 1.83 (m, 2H, C(Ph)=CHCH₂CH₂CH₃), 1.58 (s, 6H, HC{C(CH₃)N-2,6-iPr₂C₆H₃}₂), 1.43 (m, 2H, C(Ph)=CHCH₂CH₂CH₃), 1.33-1.21 (br, 12H, CH(CH₃)₂),

1.16 (d, 12H, ${}^{3}J = 7.2$ Hz, CH(CH₃)₂), 0.97 (t, 3H, ${}^{3}J = 7.2$ Hz, Bu-CH₃) ppm. ${}^{13}C{}^{1}H{}$ NMR (150 MHz, C₆D₆): $\delta = 168.93$ (HC{C(CH₃)-NAr}₂), 151.91 (NHC=CHC₃H₇)Ph), 145.68 (phenyl *C*), 142.46 (phenyl *C*), 128.09 (phenyl *C*), 127.95 (phenyl *C*), 125.40 (phenyl *C*), 125.30 (phenyl *C*), 125.20 (phenyl *C*), 123.91 (br, phenyl *C*), 94.35 (HC{C(CH₃)N-2,6- ${}^{1}Pr_{2}C_{6}H_{3}$ }₂), 91.67 (NHC=CHC₃H₇)Ph), 72.57 (DME), 59.41 (DME), 29.73 (C(Ph)=CHCH₂CH₂CH₃), 28.04 (CH(CH₃)₂), 27.88 (CH(CH₃)₂), 24.78 (CH(CH₃)₂), 24.59 (CH(CH₃)₂), 24.28 (CH(CH₃)₂), 24.14 (CH(CH₃)₂), 24.08 (C(Ph)=CHCH₂CH₂CH₃), 23.73 (HC{C(CH₃)N-2,6- ${}^{1}Pr_{2}C_{6}H_{3}$ }₂), 14.37 (Bu-CH₃) ppm. IR (KBr): v = 2957 (m), 2922 (m), 2864 (m), 1627 (w), 1594 (m), 1513 (m), 1457 (m), 1430 (s), 1400 (s), 1312 (s), 1257 (m), 1176 (m), 1141 (m), 1056 (m), 1021 (m), 931 (m), 757 (m) cm⁻¹. Anal. Calcd for C₄₄H₆₅N₃O₂Mg: C, 76.33; H, 9.46; N, 6.07. Found: C, 76.18; H, 9.32; N, 6.15.

Preparation of {κ³-N,N',N''-(ArNCMe)₂[N(Ph)CS]CH}Mg[(Ph)NC("Bu)S] (8). A benzene (2 mL) solution of PhNCS (0.270 g, 2.0 mmol) was added dropwise to a benzene (3 mL) solution of {[HC(C(Me)N-2,6-iPr₂C₆H₃)₂]Mg("Bu)}₂ (1; 0.500 g, 0.5 mmol) with stirring at room temperature. After 10 minutes, the solution was filtered. The volume of the filtrate was reduced to 2 mL, and the compound **8** crystallized at room temperature in 2 days as pale yellow crystals. Yield: 0.548 g (71%). M.p.: 60-62 °C (dec.). ¹H NMR (600 MHz, C₆D₆): δ = 8.07 (d, 2H, *J* = 7.8 Hz, phenyl *H*), 7.37 (t, 2H, *J* = 7.8 Hz, phenyl *H*), 7.16 (br, 5H, phenyl *H*), 7.08-7.06 (m, 4H, phenyl *H*), 6.94 (m, 2H, phenyl *H*), 6.67 (m, 2H, phenyl *H*), 6.15 (s, 1H, C*H*), 5.38-5.36 (m, 2H, phenyl *H*), 2.99-2.91 (m, 4H, C*H*Me₂), 2.06 (t, *J* = 7.2 Hz, 2H, set $(Ph)NC(CH_2C_3H_7)S)$, 1.76 (s, 6H, HC{ $C(CH_3)NAr$ }), 1.58-1.56 (m, 2H, (Ph)NC(CH₂CH₂C₂H₅)S), 1.47 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.23-1.21 (m, 2H, (Ph)NC($C_2H_4CH_2CH_3$)S), 1.07 (d, J = 7.2 Hz, 6H, CH(CH_3)₂), 0.97 (d, J = 7.2 Hz, 6H, $CH(CH_3)_2$, 0.82 (d, J = 7.2 Hz, 6H, $CH(CH_3)_2$), 0.59 (t, J = 7.3 Hz, 3H, Bu-CH₃). ¹³C{¹H} NMR (150 MHz, C_6D_6): $\delta = 203.29$ (SCN(Ph)Mg), 188.57 (SC(Bu)NPh), 177.13 (HC{ $C(CH_3)NAr$ }₂), 149.60 (phenyl C), 148.48 (phenyl C), 142.02 (phenyl C), 140.46 (phenyl C), 139.20 (phenyl C), 128.24 (phenyl C), 128.10 (phenyl C), 127.95 (phenyl C), 127.7 (phenyl C and benzene), 126.69 (phenyl C), 125.22 (phenyl C), 124.84 (phenyl C), 123.92 (phenyl C), 123.63 (phenyl C), 123.23 (phenyl C), 122.61 (phenyl C), 79.47 (HC{C(CH₃)NAr}₂), 38.21 ((Ph)NC(CH₂C₃H₇)S)), 30.59 ((Ph)NC(CH₂CH₂C₂H₅)S), 29.20 (CH(CH₃)₂), 27.83 (CH(CH₃)₂), 26.11 (CH(CH₃)₂), 24.54 (CH(CH₃)₂), 24.25 (CH(CH₃)₂), 24.06 (CH(CH₃)₂), 23.58 (NCCH₃), 22.00 $((Ph)NC(C_2H_4CH_2CH_3)S)$, 13.37 (Bu-CH₃) ppm. IR (KBr): v = 2956 (m), 2924 (m), 2857 (m), 1641 (m), 1620 (m), 1590 (m), 1543 (m), 1491 (m), 1454 (m), 1431 (s), 1384 (s), 1362 (s), 1261 (m), 1165 (m), 1025 (w), 791 (m) cm⁻¹. A reproducible microanalysis could not be obtained for the compound as the solvent molecule (benzene) in the crystal lattice were slowly lost upon isolation of the compoud as a dry crystalline solid. However, it is diffcult to completely remove them by placing crystalline samples of the compound under vaccum for several hours.

Preparation of {[HC(C(Me)N-2,6-ⁱPr₂C₆H₃)₂]Mg(μ -Im)}₂ (9.0.5C₇H₈). 1methylimidazole (0.082 g, 1.0 mmol) was added to a THF (5 mL) solution of {[HC(C(Me)N-2,6-ⁱPr₂C₆H₃)₂]Mg(ⁿBu)}₂ (1; 0.500 g, 0.5 mmol) with stirring at room ⁵⁹ temperature. The resultant mixture was stirred at 60 °C for overnight, the solution was filtered. The volume of the filtrate was reduced to 2 mL, and the colorless crystals of 9 were isolated at room temperature in the glovebox after addition of a few drops of toluene. Yield: 0.378 g (72%). M.p.: 130-132 °C (dec.) ¹H NMR (600 MHz, C₄D₈O): $\delta = 7.13-7.02$ (m, 5H, toluene H), 6.92 (br, 2H, N(Me)CHCHNC), 6.91-6.87 (m, 8H, phenyl H), 6.81 (br, 2H, N(Me)CHCHNC), 6.70-6.71 (m, 4H, phenyl H), 4.85 (s, 2H, HC{C(CH₃)N-2,6-ⁱPr₂C₆H₃}₂), 3.75 (s, 6H, N(CH₃)NCHNC), 3.56-3.54 (m, 4H, CHMe₂), 2.73-2.69 (m, 4H, CHMe₂), 2.31 (s, 3H, toluene CH₃), 1.56 (s, 12H, HC{C(CH_3)N-2,6-iPr₂C₆H₃}₂), 1.28 (d, 12H, J = 7.2 Hz, CH(CH_3)₂), 1.09 (d, 12H, J= 7.2 Hz, $CH(CH_3)_2$, 0.90 (d, 12H, J = 7.2 Hz, $CH(CH_3)_2$), -0.58 (d, 12H, J = 7.2Hz, CH(CH₃)₂) ppm. ¹³C{¹H} NMR (150 MHz, C₄D₈O): δ = 185.42 (C_a, C_a of C-Mg, $C_{3}H_{4}N_{3}$, 167.66 (HC{ $C(CH_{3})$ -N-2,6-ⁱPr₂C₆H₃}), 145.91 (phenyl C), 142.48 (phenyl C), 141.35 (phenyl C), 137.42 (phenyl C), 129.02 (phenyl C), 128.67 (phenyl C), 128.03 (phenyl C), 125.04 (CH of C₃H₄N₃), 124.16 (phenyl C), 123.63 (phenyl C), 122.75 (phenyl C), 122.41 (phenyl C), 118.70 (CH of $C_3H_4N_3$), 93.40 (HC{C(CH₃)NAr}₂), 35.67 (Im CH₃), 28.45 (CH(CH₃)₂), 28.09 (CH(CH₃)₂), 26.70 (CH(CH₃)₂), 24.79 (CH(CH₃)₂), 24.66 (CH(CH₃)₂), 24.53 (CH(CH₃)₂), 23.51 $(CH(CH_3)_2)$, 22.50 $(HC\{C(CH_3)N-2,6-iPr_2C_6H_3\}_2)$, 21.35 (toluene CH_3) ppm. IR (KBr): v = 2956 (m), 2923 (m), 2864 (m), 1616 (m), 1545 (m), 1516 (m), 1459 (m), 1431 (m), 1408 (s), 1313 (m), 1255 (m), 1172 (m), 1102 (m), 1020 (m), 930 (m), 790 (m) cm⁻¹. Anal. Calcd for C₇₃H₁₀₀Mg₂N₈: C, 77.03; H, 8.86; N, 9.84. Found: C, 76.95 H, 8.75; N, 9.91.

X-ray Crystallography. Single-crystal X-ray diffraction measurements were carried out on an Agilent SuperNova EosS2 diffractometer using graphite monochromated Cu K α radiation ($\lambda = 1.54184$ Å) or Mo K α radiation ($\lambda = 0.710$ Å). The crystals were kept at 150 (10) K during data collection. The structures were solved by the Superflip⁵ structure solution program in Olex2⁶ and refined using Fullmatrix Least Squares based on F^2 with program SHELXL-97⁷ and the SHELXL-2014 within Olex2. Crystal data and experimental data for **2-4** and **7-9** are summarized in Table S1.

For compounds 2 and 8, the solvent molecules were disordered and could not be modeled properly; thus, the program *SQUEEZE*⁸, a part of the PLATON package of crystallographic software, was used to calculate the solvent disorder area and remove its contribution to the overall intensity data.

REFERENCES

- (a) A. P. Dove, V. C. Gibson, P. Hormnirun, E. L. Marshall, J. A. Segal, A. J. P. White and D. J. Williams, *Dalton Trans.*, 2003, 3088–3097; (b) C. Jones, S. J. Bonyhady, S. Nembenna, and A. Stasch, *Eur. J. Inorg. Chem.*, 2012, 2596-2601.
- 2. W. Ren and D. Gu, Inorg. Chem., 2016, 55, 11962-11970.
- 3. N. Taniguchi, J. Org. Chem. 2004, 69, 6904-6906.
- G. Ribaudo, M. Bellanda, I. Menegazzo, L. P. Wolters, M. Bortoli, G. Ferrer-Sueta, G. Zagotto and L. Orian, *Chem. Eur. J.*, 2017, 23, 2405 – 2422.

- (a) L. Palatinus, and G. Chapuis, J. Appl. Cryst., 2007, 40, 786-790. (b) L.
 Palatinus and A. van der Lee, J. Appl. Cryst., 2008, 41, 975-984. (c) L.
 Palatinus, S. J. Prathapa and S. van Smaalen, J. Appl. Cryst., 2012, 45, 575-580.
- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
- 7. G. M. Sheldrick, Acta Cryst. Sect A, 2008, 64, 112-122.
- 8. P. van der Sluis and A. L. Spek, Acta Crystallogr. Sect. A, 1990, 46, 194-201.

Compound	2	3	4	7	8	9·0.5C ₇ H ₈
Formula	$C_{66}H_{100}Mg_2N_4S_2$	C ₃₇ H ₅₈ MgN ₂ OSe	C ₃₇ H ₅₈ MgN ₂ O Se ₂	C ₄₄ H ₆₅ MgN ₃ O ₂	C47H60MgN4S2	C ₇₃ H ₁₀₀ Mg ₂ N ₈
Fw	1062.24	650.12	729.11	692.30	769.45	1138.22
crystal system	monoclinic	triclinic	monoclinic	triclinic	monoclinic	triclinic
space group	$P 2_1/n$	P -1	$P 2_1/c$	<i>P</i> -1	$P 2_1/c$	P -1
<i>a</i> (Å)	12.01460(10)	9.3835(3)	23.0510(5)	8.9221(2)	21.2566(2)	13.3001(5)
<i>b</i> (Å)	20.5390(2)	12.6275(3)	10.0565(2)	10.1350(2)	17.0216(2)	14.3346(5)
<i>c</i> (Å)	14.3234(2)	15.4945(5)	16.8071(4)	23.6908(5)	13.6278(2)	21.0947(8)
α (deg)	90	86.019(2)	90	100.865(2)	90	72.837(3)
β (deg)	100.3880(10)	80.490(2)	108.036(3)	95.075(2)	105.9520(10)	75.308(3)
$\gamma(\text{deg})$	90	84.668(2)	90	101.435(2)	90	63.308(4)
$V(Å^3)$	3476.62(7)	1800.14(9)	3704.65(15)	2044.39(8)	4740.95(10)	3398.4(2)
Z	2	2	4	2	4	2
$\rho_{\rm calc}$ (g/cm ³)	1.015	1.199	1.303	1.125	1.076	1.112
μ/mm ⁻¹	1.142	1.090	2.875	0.659	1.393	0.661
radiation	CuKα	МоКа	CuKa	СиКα	СиКа	СиКа
size (mm)	$0.20\times0.20\times0.2$	$0.15 \times 0.15 \times 0.15$	$0.1~0{\times}~0.10{\times}~0.05$	$0.10 \times 0.10 \times 0.10$	$0.20 \times 0.10 \times 0.10$	$0.30 \times 0.20 \times 0.20$
<i>F</i> (000)	1160	696	1520	756	1651	1236
2θ range (deg)	7.61 to 146.152	6.838 to 58.994	9.676 to 144.04	7.666 to 145.948	6.758 to 146.846	8.166 to 143.752
reflns collected	25706	31682	34408	30124	35040	62621
indep. reflns	$6800 (R_{int} = 0.0239)$	$8759 (R_{int} = 0.0281)$	7141 ($R_{int} = 0.0322$)	$8024 (R_{int} = 0.0389)$	9328 ($R_{int} = 0.0324$)	13121 ($R_{int} = 0.0543$)
refins obs. $[I > 2\sigma(I)]$	5849	7370	6343	7334	6872	11966
data/restr/paras	6800 /0/349	8759/1/394	7141 /59/458	8024 /0/468	9328 /48 /518	13121 /0/ 771
GOF	1.054	1.029	1.039	1.042	1.047	1.020

 Table S1. Crystal data and experimental parameters for compounds 2-4 and 7-9

CCDC	1874067	1874068	1874069	1874070	1874071	1874072
largest diff. peak/hole / e Å-3	0.283 / -0.186	0.712/ -0.638	0.821 / -0.622	0.307 / -0.232	0.885 / -0.424	0.334 / -0.288
R1/wR2 (all data)	0.0491 / 0.1154	0.0508/ 0.0966	0.0503/ 0.1160	0.0474 / 0.1255	0.0767 / 0.1575	0.0432 / 0.1084
$R1/wR2 [I \ge 2\sigma(I)]$	0.0418 / 0.1095	0.0395/ 0.0912	0.0434 / 0.1114	0.0443 / 0.1224	0.0567 / 0.1491	0.0395 / 0.1047