Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Ni and Pd N-confused porphyrin complexes as catalysts for the synthesis of cyclic carbonates from epoxides and CO₂

Jay-ar B. dela Cruz^{a,b,c}, Mirko Ruamps^c, Susan Arco^d, and Chen-Hsiung Hung^c ^aSustainable Chemical Science and Technology, Taiwan International Graduate Program, Taiwan ROC ^bDepartment of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 300 ROC ^cInstitute of Chemistry, Academia Sinica, 128 Sec 2 Academia Rd., Nankang, Taipei 11529, Taiwan ROC ^dInstitute of Chemistry, University of the Philippines -Diliman, Quezon City 1101 Philippines

[1] Synthesis of Ni ^{II} NCTPP, catalysts 1 and 2, and their precursors	S2
[2] Coupling Reaction of CO ₂ with Epoxide	S4
[3] Sample % conversion calculation from ¹ H NMR data	S5
[4] ¹ H NMR and ¹³ C NMR spectra	S7
[5] High Resolution mass spectra	-S17
[6] Elemental Analysis Report	S20
[7] Theoretical calculations coordinates and relative energies	-S21
[8] General information for crystal structure of 2-NH ₂ - <i>m</i> -C ₆ H ₄ -CO ₂ CH ₃ NCTPP (i14918;	
CCDC1889366)	S29
Table S1. Crystal data and structure refinement for i14918	·S30
Figure S1. Molecular structure of 2-NH ₂ - <i>m</i> -C ₆ H ₄ -CO ₂ CH ₃ NCTPP from X-ray single	
structure determination with atoms presented in 30% thermal ellipsoids	S31

[1] Synthesis of Ni^{II}NCTPP, catalysts 1 and 2, and their precursors.

2-NCH₂-*m*-C₆H₄CO₂CH₃NCTPP.

A mixture of NCTPP (100.0 mg 0.163 mmol), Cs₂CO₃ (156.4 mg, 0.488 mmol), and methyl-3-(bromomethyl)benzoate (146.6 mg, 0.651 mmol) was heated at 100 °C in 20.0 mL dry dimethylformamide under nitrogen for two hours. After cooling down to room temperature, dimethylformamide was removed under vacuum and re-dissolved in CH₂Cl₂ to filter off excess Cs₂CO₃. The mixture was purified by silica gel column chromatography with acetone-CH₂Cl₂ [4:96 (v/v)] to obtain a green solid product (84.0 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 1.71 (s, 1H), 3.82 (s, 3H), 4.07 (br s, 1H), 4.99 (s, 2H), 6.41 (d, J = 7.7 Hz, 1H), 6.92 (t, J = 7.7 Hz, 1H), 7.29 (s, 1 H), 7.35 (d, J = 4.8 Hz, 1H), 7.40 (s, 1H), 7.43–7.47 (m, 3H), 7.53–7.58 (m, 10H), 7.63–7.71 (m, 6H), 7.78–7.82 (m, 4H), 7.88 (d, J = 4.5 Hz, 1H), 7.90-7.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 52.1, 53.6, 107.3, 115.4, 115.8, 124.4, 126.8, 127.2, 127.5, 127.8, 128.2, 128.4, 128.6, 128.7, 129.2, 129.5, 130.0, 130.2, 130.6, 130.8, 131.2, 133.2, 133.4, 133.5, 134.9, 135.9, 136.1, 137.5, 140.0, 141.1, 141.5, 143.6, 143.9, 154.0, 155.0, 163.6, 163.9, 166.6; UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 362 (25260), 446 (64062), 658 (6808), 716 (8738); HRMS(ESI) Calc for C₅₃H₃₉N₄O₂ ([M+H]⁺) 763.3073, found 763.3082.

2-NCH₂-*m*-C₆H₄CO₂HNCTPP.

A mixture of 2-NCH₂-*m*-C₆H₄CO₂CH₃NCTPP (100.0 mg, 0.131 mmol) and 1.0 M NaOH (3.9 mL, 3.9 mmol) was refluxed at 80 °C in a mixture of dry THF:CH₃OH (12:8) mL under nitrogen for two hours. The reaction mixture was then dried, to which 1.0 M HCl (3.9 mL, 3.9 mmol) was added. The solid product was filtered off and washed several times with RO water. The crude product was purified by silica gel column chromatography with CH₃OH-CH₂Cl₂ [3:97 (v/v) to obtain a dark green solid product (88.3 mg, 90%). ¹H NMR (400 MHz, CDCl₃):

δ 5.02 (s, 2H), 6.12 (s, 1H), 6.41 (d, J = 7.6 Hz, 1H), 6.87 (t, J = 7.6 Hz, 1H), 7.19 (s, 1H), 7.5 (d, J = 7.6 Hz, 1H), 7.57–7.65 (m, 10H), 7.70–7.87 (m, 14 H), 8.06 (d, J = 6.5 Hz, 2H), 8.21 (d, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 54.3, 117.3, 118.4, 124.8, 125.6, 127.4, 127.6, 127.8, 128.1, 128.3, 129.2, 129.2, 129.5, 129.9, 130.8, 132.6, 132.8, 132.9, 133.4, 134.1, 134.3, 134.4, 134.6, 135.0, 135.2, 135.4, 136.7, 138.5, 139.6, 140.7, 169.0; UV/Vis (CH₂Cl₂): λ_{max} (ε) 307 (19592), 368 (24054), 461 (81738), 566 (3121), 720 (5374), 793 (12019); HRMS(ESI) Calc for C₅₂H₃₇N₄O₂ ([M+H]⁺) 749.2917, found 749.2908.

$Pd^{II}[2-NCH_2-m-C_6H_4CO_2HNCTPP] (1).$

Palladium(II) chloride (94.7 mg, 0.536 mmol) was dissolved in 10 mL dry CH₃CN and added to 2-NCH₂-*m*-C₆H₄CO₂HNCTPP (100 mg, 0.134 mmol) that was previously dissolved in 20 mL dry THF. The mixture was refluxed to 80 °C for three hours. The crude product was dried under vacuum and purified by silica gel column chromatography with CH₃OH-CH₂Cl₂ [5:95 (v/v)] to obtain a brownish solid product (64.9 mg, 57%). ¹H NMR (400 MHz, CDCl₃): δ 5.14 (s, 2H), 6.82 (d, J = 7.8 Hz, 1H), 7.07 (t, J = 7.8 Hz, 1H), 7.27–7.31 (m, 2H), 7.43–7.59 (m, 14 H), 7.71 (d, J = 5.0 Hz, 1H), 7.78–7.90 (m, 10H), 8.02 (d, J = 5.0 Hz, 1H), 8.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 54.9, 118.6, 119.5, 122.9, 126.6, 126.9, 127.0, 127.1, 127.2, 127.5, 127.7, 128.3, 128.8, 129.2, 129.4, 129.9, 130.6, 130.8, 131.3, 131.7, 131.8, 133.1, 133.3, 133.7, 138.1, 138.9, 140.1, 141.8, 142.3, 143.7, 146.8, 148.7, 148.8, 151.4, 152.4, 170.3; UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 376 (6923), 393 (7100), 429 (10926), 450 (15635), 533 (1327), 576 (850), 700 (987), 764 (1127); HRMS(ESI_{neg}) Calc for C₅₂H₃₃N₄O₂Pd ([M-H]⁻) 851.1638, found 851.1644; Elemental analysis calc (%) for C₅₂H₃₄N₄PdO₂ (MW = 853.27) +1.85 H₂O + 0.3 CH₂Cl₂ : C 68.87, H 4.23, N 6.14, found: C 68.47, H 4.46, N 6.57 (CH₂Cl₂ and water could not be removed from compound **1** totally despite drying it under high vacuum).

Ni^{II} [2-NCH₂-*m*-C₆H₄CO₂HNCTPP] (2).

Nickel(II) acetate tetrahydrate (132.9 mg, 0.536 mmol) was dissolved in 15 mL dry CH₃CN and added to 2-NCH₂-*m*-C₆H₄CO₂HNCTPP (100 mg, 0.134 mmol) that was previously dissolved in 20 mL dry THF. The mixture was refluxed to 80 °C for three hours. The crude product was dried under vacuum and purified by silica gel column chromatography with CH₃OH- CH₂Cl₂ [3:97 (v/v)] to obtain a greenish solid product (49.5 mg, 46%). ¹H NMR (400 MHz, CDCl₃): δ 5.12 (s, 2H), 6.81 (d, J = 7.7 Hz, 1H), 7.09 (t, J = 7.7 H, 1H), 7.29–7.32 (m, 2H), 7.42–7.56 (m, 13H), 7.62–7.67 (m, 2H), 7.76–7.88 (m, 10H), 8.02 (d, J = 5.0 Hz, 1H), 8.36 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 54.8, 117.1, 118.2, 121.9, 123.8, 125.9, 126.8, 127.0, 127.1, 127.1, 127.2, 127.6, 127.7, 128.2, 128.3, 128.8, 129.2, 129.5, 130.2, 130.7, 130.9, 131.6, 132.3, 132.9, 133.1, 133.3, 133.5, 138.0, 138.7, 139.8, 141.3, 144.6, 146.3, 148.3, 149.7, 151.4, 151.6, 153.8, 170.6; UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 363 (23524), 429 (43297), 462 (24873), 560 (5270), 722 (2496), 792 (2634); HRMS(ESI_{neg}) Calc for C₅₂H₃₃N₄O₂Ni ([M-H]⁻) 803.1957, found 803.1967; Elemental analysis calc (%) for C₅₂H₃₄N₄NiO₂ (MW = 805.58) + 0.85 C₇H₈ + 1.05 H₂O : C 77.1, H 4.79, N 6.21, found: C 77.01, H 4.68, N 6.12 (toluene was used to freeze dry compound **2** but could not be removed totally despite drying it under high vacuum).

Ni^{II} [2-NCH₂-*m*-C₆H₄CO₂CH₃NCTPP] (3).

Nickel(II) acetate tetrahydrate (130.5 mg, 0.524 mmol) was dissolved in 15 mL dry CH₃CN and added to 2-NCH₂-*m*-C₆H₄CO₂CH₃NCTPP (100 mg, 0.131 mmol) that was previously dissolved in 20 mL dry THF. The mixture was refluxed to 80 °C for three hours. The crude product was dried under vacuum and purified by silica gel column chromatography with CH₃OH-CH₂Cl₂ [1:99 (v/v)] to obtain a greenish solid product (58.0 mg, 54%). ¹H NMR (400

MHz, CD₂Cl₂): δ 3.82 (s, 3 H), 5.16 (s, 2H), 6.83 (d, J = 7.5 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.34–7.41 (m, 3H), 7.48 (d, J = 7.4 Hz, 2H), 7.53 (d, 7.5 Hz, 1H), 7.56–7.62 (m, 9H), 7.69–7.72 (m, 2H), 7.81–7.85 (m, 6H), 7.88–7.90 (m, 2H), 7.92–7.95 (m, 2H), 8.10 (d, J = 5.0 Hz, 1H), 8.45 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 52.4, 55.5, 117.6, 118.8, 122.3, 124.7, 126.3, 127.3, 127.5, 127.6, 127.6, 127.7, 127.8, 128.0, 128.4, 128.7, 129.0, 129.1, 130.4, 130.5, 130.8, 131.7, 132.1, 132.6, 132.6, 133.2, 133.5, 133.8, 133.9, 134.1, 138.2, 139.0, 140.1, 141.7, 144.9, 146.7, 148.6, 150.0, 151.7, 152.8, 153.9, 166.8; UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 363 (22677), 428 (40444), 462 (23687), 559 (4949), 721 (2230), 792 (2336); HRMS(ESI) Calc for C₅₃H₃₆N₄O₂Ni ([M]⁺) 819.2270, found 819.2277; Elemental analysis calc (%) for C₅₃H₃₆N₄O₂Ni (MW = 819.6) + 1.05 C₇H₈ + 1.95 H₂O + 0.3 CH₂Cl₂: C 74.56, H 5.05, N 5.73, found: C 73.99, H 4.46, N 5.73 (Toluene was used to freeze dry compound **3** but solvents could not be removed totally despite drying it under high vacuum).

Ni^{II}NCTPP.

Ni^{II}NCTPP was first reported by Latos-Grażyński and co-workers¹ in 1994. For our study, nickel(II) acetate tetrahydrate (120.5 mg, 0.486 mmol) was dissolved in 15 mL dry CH₃CN and added to N-confused tetraphenyl porphyrin (100 mg, 0.162 mmol) that was previously dissolved in 15 mL dry THF. The mixture was refluxed to 80 °C for six hours. The crude product was dried under vacuum and purified by silica gel column chromatography with hexane-CH₂Cl₂ [4:6 (v/v)] to obtain crystalline green product with decent yield. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.60–7.62 (m, 9H), 7.67–7.69 (m, 3H), 7.78–7.85 (m, 6H), 7.88–7.92 (m, 6H), 8.06 (d, J = 5.0 Hz, 1H), 8.09 (d, J = 5.0 Hz, 1H), 8.57 (d, J = 3.3 Hz, 1H), 10.23 (br s, 1H); ¹³C NMR (100 MHz, CD₂Cl₂): δ 116.0, 117.3, 118.4, 124.1, 127.0, 127.1, 127.2, 127.4, 127.7, 128.0, 128.5, 129.0, 130.1, 131.5, 132.0, 132.3, 132.7, 133.0, 133.2, 133.4, 133.6, 137.7, 139.8, 141.6, 144.5, 144.8, 145.1, 148.5, 149.9, 151.8, 153.8; UV/Vis (CH₂Cl₂): λ_{max} (ϵ) 301 (15208), 360 (32414), 425 (69635), 460 (33000), 518 (6201), 556 (6280), 594 (6977), 717 (3828), 788 (4175); HRMS(ESI) Calc for C44H₂₈N₄Ni ([M]⁺) 670.1667, found 670.1675.

[2] Coupling Reaction of CO₂ with Epoxide.

Procedure for a sample reaction. A 30-mL stainless autoclave was charged with epoxide (with 7.0- to 10.0- mmol range), catalyst (mole percent with respect to epoxide indicated in the text), triethylamine or 2,6-lutidine (mole percent with respect to epoxide indicated in the text), and then CO₂ (initial pressure indicated in the text). The reaction was heated with stirring at constant temperature for a reaction time. The reactor was then cooled to room temperature followed by the slow release of excess CO₂. Percent yield was determined by ¹H-NMR using dimethyl sulfone as an internal standard. To demonstrate obtaining isolated yield, column chromatography was done for **IB** with CH₃OH-CH₂Cl₂ [5:95 (v/v)].

4-Phenoxymethyl-1,3-dioxolan-2-one (IB). 89.6% ¹H NMR yield; 84.3 % isolated yield; ¹H NMR (CDCl3, 400 MHz) δ 4.11 (dd, J = 4.0, 11.0 Hz, 1H), 4.21 (dd, J = 4.0, 11.0 Hz, 1H), 4.50 (t, J = 8.0 Hz, 1H), 4.58 (t, J = 8.0 Hz, 1H), 4.97–5.02 (m, 1H), 6.87 (d, J = 7.5 Hz, 2H), 6.97 (t, J = 7.5 Hz, 1H), 7.26 (t, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 66.1, 66.8, 74.1, 114.5, 121.8, 129.6, 129.5, 154.7,157.7; HRMS (EI) calcd for C₁₀H₁₀O₄194.0579, found 194.0578 ([M]⁺)

4-(chloromethyl)-1,3-dioxolan-2-one (IIB). 98.0% ¹H NMR (CDCl₃, 400 MHz) δ 3.63–3.79 (m, 2H), 4.29 (dd, J = 6, 8.5 Hz, 1H), 4.51 (t, J = 8.5 Hz, 1H), 4.93–4.98 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 43.6, 66.9, 74.2, 154.1 ; HRMS (EI) calcd for C₄H₃³⁵ClO₃ 135.9927, found 135.9929 ([M]⁺)

4-(butoxymethyl)-1,3-dioxolan-2-one (IIIB). 92.0% ¹H NMR (CDCl₃, 100 MHz) δ 0.88 (t, 7.5 Hz, 3H), 1.28–1.37 (m, 2H), 1.48–1.55 (m, 2H), 3.47 (t, *J* = 6.8 Hz, 2H), 3.54–3.65 (m, 2H), 4.35 (dd, *J* = 6.0, 8.3 Hz, 1H), 4.46 (t, *J* = 8.3 Hz, 1H), 4.74–4.80 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.7, 19.1, 31.4, 66.2, 69.6, 71.8, 75.1, 154.9; HRMS (FAB) calcd for C₈H₁₅O₄ 175.0970, found 175.0969 ([M+H]⁺)

4,4'-((ethane-1,2-diylbis(oxy))bis(methylene))bis(1,3-dioxolan-2-one) (IVB). 89.5% ¹H NMR (CDCl₃, 400 MHz) δ 3.59–3.76 (m, 8H), 4.34–4.43 (m, 2H), 4.45–4.50 (m, 2H), 4.76–4.83 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 66.1, 70.3, 71.3, 75.2, 155.1; HRMS (APCI) calcd for C₁₀H₁₅O₈ 263.0767, found 263.0759 ([M+H]⁺)

4-methyl-1,3-dioxolan-2-one (VB). 24.8% ¹H NMR (CDCl₃, 400 MHz) δ 1.14 (d, *J* = 6.2 Hz, 3H), 3.74 (t, *J* = 7.1 Hz, 1H), 4.28 (dd, *J* = 7.1, 8.5 Hz, 1H), 4.55–4.63 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ ¹³C NMR (CDCl₃, 100 MHz) δ 18.9, 70.4, 73.4, 154.9; MS (EI) calcd for C4H6O3 102.0317, found 102.0316 ([M]⁺)

[3] Sample % conversion calculation from ¹H NMR data.

Total crude catalytic product is weighed, from which a portion (typically 20 - 30 mg) is taken for ¹H NMR analysis. A known amount of dimethyl sulfone is added to the ¹H NMR sample as internal standard. The number of moles of catalytic product in the ¹H NMR sample is directly related to the ratio of the integration of the known catalytic product peak per number of proton in proportion to the standard's integration per proton:

$$\frac{n_{(p,NMR)}}{\left(\frac{l}{H}\right)_p} = \frac{n_{(s,NMR)}}{\left(\frac{l}{H}\right)_s}$$

where $n_{(p,NMR)}$ = number of moles of the product contained in the NMR tube

 $n_{(s,NMR)}$ = number of moles of the standard contained in the NMR tube

 $(I/H)_p$ = integration per number of protons on a selected product ¹H NMR peak

 $(I/H)_s$ = integration per number of protons of the internal standard ¹H NMR peak

The total number of moles of product in the crude reaction mixture is calculated by multiplying $n_{(p,NMR)}$ by the ratio of the mass of the crude product to the mass of the crude NMR sample:

$$n_p = n_{(p,NMR)} \left(\frac{m_{crude}}{m_{NMR}} \right)$$

where n_p = total number of moles of the catalytic product

 m_{crude} = mass of the total crude product

 m_{NMR} = mass of the NMR sample

Percent yield, is taken as the ratio of n_p to the theoretical yield (in moles) multiplied by 100.

Sample (actual) data for the conversion of 1,2-epoxy-3-phenoxypropane, **IA** (molar mass: 150.17, density: 1.109 g/mL, purity: 99.0%) to 4-(phenoxymethyl)-1,3-dioxolan-2-one, **IB** (molar mass: 194.1) using dimethyl sulfone (molar mass: 94.13, purity: 98.0%) as standard:

initial volume of substrate **IA**: mass, crude product **IB**: mass, NMR sample: mass, standard: Integration for the standard: Corresponding # of standard protons: Integration for the product: Corresponding # of standard protons: 4.08 mL 5867.3 mg 23.23 mg 19.8 mg 11.6 (8 2.93, s) 6 1 (8 5.00, m) 1

To account for the unreacted substrate, it is noteworthy to mention that the chemical shift at *ca*. 4.20 ppm corresponds to overlapping peaks of both the substrate and the product (with an assignment of 1 proton each) as shown in the overlay of **IA** and crude **IB** ¹H NMR spectra below:

At the said chemical shift, the crude product's integration (red curve, upper panel) is 1.097, suggestive of residual unreacted substrate with an integration of 0.097. Using the same calculation, this equates to 2.61 mmol of unreacted IA, which, together with 26.93 mmol product yield, accounts for >99% of the initial number of moles of IA that initially went into the reaction.

¹ Rounding off was done in the final step of the calculation.

[4] ¹H NMR and ¹³C NMR spectra.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

100 MHz ¹³C NMR spectrum of 2-NCH₂-m-C₆H₄CO₂CH₃NCTPP in CDCl₃

400 MHz ¹H NMR spectrum of 2-NCH₂-m-C₆H₄CO₂HNCTPP in CDCl₃

100 MHz ¹³C NMR spectrum of 2-NCH₂-m-C₆H₄CO₂HNCTPP in CDCl₃

100 MHz ¹³CNMR spectrum of **1** in CDCl₃

100 MHz ¹³C NMR spectrum of **1** in CDCl₃

100 MHz ^{13}C NMR spectrum of $\boldsymbol{2}$ in CDCl_3

100 MHz 13 C NMR spectrum of **3** in CD₂Cl₂

100 MHz ^{13}C NMR spectrum of IB in CDCl_3

100 MHz ^{13}C NMR spectrum of IIB in CDCl_3

100 MHz ^{13}C NMR spectrum of IIIB in CDCl_3

100 MHz ¹³C NMR spectrum of **IVB** in CDCl₃

100 MHz ^{13}C NMR spectrum of \boldsymbol{VB} in CDCl_3

[5] High Resolution mass spectra

Elemental Composition Report	Page 1
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1000.0, max = 1000.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2	
Monoisotopic Mass, Even Electron Ions 115 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C 0-1000 H: 0-1000 N: 3-4 O: 2-2 JD001 KE267	10-Aug-2017 15-40-30
0810_10001 37 (1.353) 100763.3082 ← [m+m] ⁺	1: TOF MS ES+ 4.41e+004
764.3144 %- 765.3173	
0 605 4265 615 2485 651 9642 667 3745 693 8417 700 2988 713 8680 739 5406 762 8390 766 3300 795 3070 817 2771 825 2308 834 3617 849 2503 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870	879.4268 897.4037 880 890 900
Minimum: -1000.0 Maximum: 5.0 5.0 1000.0	

 Mass
 Calc. Mass
 mDa
 PFM
 DBE
 i-FIT
 i-FIT (Norm) Formula

 763.3082
 763.3073
 0.9
 1.2
 36.5
 40.1
 0.0
 C53
 H39
 N4
 02

HRMS ESI spectrum of 2-NCH₂-m-C₆H₄CO₂CH₃NCTPP

Elemental Composition Report	Page	1
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1000.0, max = 1000.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2		
Monoisotopic Mass, Even Electron Ions 56 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C. 0-400 H: 0-1000 N: 4-4 O: 2-2 JD002	KE267 [m++i] + 18-May-20	018
0518_JD002 35 (1.649) Cm (35-1)	15:47 1: TOF MS E	:17 S+
100- %-	749.2908 3.000** 750.2980	103
0 603.1784 633.5090.638.9471 657.0665 678.9611 712.9987717.9417 600 610 620 630 640 650 660 670 660 690 700 710 720 73	751.3134 746.9523 30 740 750 760 770 780 790 600 810 820 820 840 850 860 870 880	\$ <u>7</u>
Minimum: -1000.0 Maximum: 5.0 5.0 1000.0		
Mass Calc. Mass mDa PPM DBE i-FIT i-FY	FIT (Norm) Formula	
749,2908 749,2917 -0.9 -1.2 36.5 39.4 0.0	C52 H37 N4 O2	

HRMS ESI spectrum of 2-NCH₂-m-C₆H₄CO₂HNCTPP

Elemental Composition Report	Page 1
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1000.0, max = 1000 Element prediction: Off Number of isotope peaks used for i-FIT = 2	0
Monoisotopic Mass, Even Electron Ions 55 formula(e) evaluated with 1 results within limits (all results (up Elements Used: C: 0-400 H: 0-1000 N: 4-4 O: 2-2 Pd: 1-1	to 1000) for each mass)
JD005	KE267 [M-H] 18-May-2018
0518_JD005 22 (1.059) Cm (22-1)	16.21.50 2: TOF MS ES-
100	851.1644 850.1711 853.1646 855.1711 853.1646
%-	849.1717
744.9465 754.8320 765.1496 776.9414 794.9310 800.95	2 812.3516 818.9066 847.1800 857.1635 867.1948 887.1428 903.9949 916.1637 930.0417
740 750 760 770 780 790 800	810 820 830 840 850 860 870 880 890 900 910 920 930 940
Minimum: -100 Maximum: 5.0 5.0 1000	0
Mass Calc. Mass mDa PPM DBE	i-FIT i-FIT (Norm) Formula
851.1644 851.1638 0.6 0.7 38.5	49.8 0.0 C52 H33 N4 O2 Pd

HRMS ESI spectrum of 1

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1000.0, max = 1000.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Odd and Even Electron Ions 55 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-400 H: 0-1000 N: 4-4 O: 2-2 Ni: 1-1

C: 0-400 H: 0-1000 N: 4-4 JD003	O: 2-2 NI: 1-1	KE267	18-May-2018 18-45-10
100-1		803.1967	2: TOF MS ES- 1.63e+003
		(M-HJ = 804.2015	
%-		806.2026	
0 <u>699.5823</u> <u>719.1119</u> <u>730</u> <u>700</u> <u>710</u> <u>720</u> <u>7</u>	0.9825 744.9537 757.0651 769.3993 780.8903 730 740 750 760 770 780	03 794.9382 807.1984 790 800 810 820 830 840 850	866.2101870.9711_879.7708_895.9645_m/z 860 870 880 890 900
Minimum: Maximum:	-1000.0		

Page 1

Mass Calc. Mass mDa PFM DBE i=FIT i=FIT (Norm) Formula 803.1967 803.1957 1.0 1.2 39.0 14.1 0.0 C52 H33 N4 02 Ni

819.2277 819.2270 0.7 0.9 38.0 27.1 0.0 C53 H37 N4 O2 Ni

HRMS ESI spectrum of 2

Elemental Composition Report	David
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1000.0, max = 1000.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2	Page 1
Monoisotopic Mass, Odd and Even Electron Ions 57 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-400 H: 0-1000 N: 4-4 O: 2-2 Ni: 1-1 JD001a KE267	24-May-2018
0524_JD001a 19 (0.888) Cm (18:19) 100 100	14:32:51 1: TOF MS ES+ 5.40e+002
% 820.2286 % 822.2280 822.2280 841.2095 823.2283 851.2106 857.2161 809.6712 % 818.2232 % 818.2232 % 818.2332 % 819.216	59.4637
Minimum: -1000.0 Maximum: 5.0 5.0 1000.0	010 020 000 020 090 090 900
Mass Calc. Mass mDa FFM DBE 1-FIT 1-FIT (Norm) Formula	

HRMS ESI spectrum of **3**

[6] Elemental Analysis Report

Elemental analyses were performed by the elemental analysis service of National Chung Hsing University, Taiwan and are reported as the average of two analyses.

> 本實驗數據為檢測結果,不得用於商業廣告、認證及法律証據使用。(This result is for academic use only, not to be used for any judicial or commercial advertising purpose.)
> 儀器負責人:鄭政峯 教授 檢測技術員:陳宜絹。

(Instrument Director : Prof. Jen-Fon Jen Operator : I-Chuan Chen)

樣品資訊:

Web NO	SEA0001002019020036		
Department :	中央研究院化研所	DATE	
Supervisor :	洪政雄	收件日: 2019.03.05	
User name :	洪政雄	分析日: 2019.03.06	

分析結果:

Sample code	Weight(mg)	N%	С%	H%	0%	S %	Repeat	Charge
	1.646	6.53	68.69	4.48			1	¢ 1 500
10005	1.937	6.61	68.24	4.43			1	φ1,500
推測值		6.57	73.20	4.02				
J0003	2.002	6.05	77.15	4.98			1	\$ 1,500
	2.036	6.19	76.86	4.37			1	
推測值		6.96	77.53	4.25				
J0001a	2.385	5.17	73.99	4.53			1	¢ 1 500
	1.758	5.14	73.99	4.39			1	φ1,500
推測值		6.84	77.67	4.43				

備註:

使用 儀 器 ; Elementar vario EL CUBE(CHN-OS Rapid, German), Accuracy: 0.1%, Precision: 0.2%

	標準品	N %	C %	H %	0%	S 96
*	Acetanilide	10.36	71.09	6.71		
	Benzoic acid				26.20	
	Sulfanilic acid	8.09	41.60	4.07		18.50
	Daily standard	10.30	71.02	6.69		

Labels: JD005 = complex 1 JD003 = complex 2 JD001a = complex 3

[7] Theoretical calculations coordinates and relative energies

The optimized structures shown in Fig. 3 are the results of computations performed at M06/6-31g(d) level. Following are their respective coordinates. The energies of the ring-opening intermediates (namely, IntIA and IntVA) are relative to the energies of the corresponding initial states of the catalyst and epoxides (namely, 2COO⁻-IA and 2COO⁻-VA).

2000IA			
Atom	Сооз	rdinates (Angst	croms)
C	X 1 61129000	1 2 77065200	۲ ۵ 15550200
C	2 64202700	-2.77905200	-2.32534900
C	2.04202700	-1.91914200	-2.32334000
C N	2.19916300	-0.64661100	-1.05505000 1 45154000
N Q	0.88349000	-0.69525800	-1.43134000
C	0.52471000	-2.02363900	-1.61105400
C	-3.91624700	-1.08667600	-0.93727400
N	-3.1414/900	-2.1/590800	-0.92415800
C	-1.79531400	-1./1518400	-1.06645500
C	-1./563/000	-0.31236200	-1.09424900
C	-3.13120100	0.06392700	-1.04508500
C	3.5194/800	2.61/50/00	-0.52849300
С	2.74082200	3.56377800	0.03419100
С	1.37304300	3.15861300	-0.19471700
N	1.32192700	1.93978800	-0.81769200
С	2.62824500	1.61057200	-1.05628000
С	-3.21982900	3.78255300	-0.65672700
С	-2.13682300	4.47032400	-0.23684200
С	-1.02355400	3.55517100	-0.26800700
N	-1.40549900	2.32574300	-0.71299300
С	-2.78164900	2.43724000	-0.91098000
С	-0.72780500	-2.56921700	-1.36890900
С	-3.64552800	1.38080100	-1.07126200
С	3.06263800	0.44318700	-1.65740400
С	0.27451400	3.94783900	0.08643400
С	-0.88819700	-4.02854900	-1.57824400
С	-5.10345300	1.61794300	-1.17023400
С	4.48863400	0.33241500	-2.04776900
С	-1.66143500	-4.50592000	-2.64087400
С	-1.81375300	-5.87247000	-2.84575400
С	-1.19310800	-6.77776000	-1.98922100
С	-0.41198700	-6.30954100	-0.93667900
С	-0.24873500	-4.94350500	-0.73262200
С	-5.64488800	2.30587100	-2.26127000
С	-7.01386400	2.52983400	-2.35420900
С	-7.86814500	2.06705600	-1.35833000
С	-7.34194100	1.38556700	-0.26499100
С	-5.97274900	1.16487300	-0.17026200
C	5.32554100	-0.64231400	-1.49472700
C	6.66329900	-0.71920500	-1.86429700
С	7.19169300	0.17787900	-2.78759500
C	6.37188200	1.15860900	-3.33766700
C	5 03325800	1,23348100	-2.97017500
C	0 46115900	5.27902300	0.71638600
Č	1 13115400	6 31306900	0 05532600
C	1 28086000	7.56131100	0.65004000
Č	0 75767900	7 79775300	1 91740200
C	0 08869300	6 77702700	2 58654600
\sim	0.000000000	0.11102100	2.0007000

С	-0.05791100	5.52956900	1.99135100
Ni	-0.24502700	0.81061100	-1.02848200
С	-1.65126400	-3.07279500	3.05593400
С	-0.16256200	-3.14009500	3.42082000
0	0.13365100	-2.75629800	4.56909000
0	0.59595900	-3.50386700	2.48362100
С	-0.78234000	-0.08130600	2.34027300
С	0.62074900	-0.32944200	2.03892300
С	1.61468500	-0.38264800	3.15758200
0	0.03044400	0.95008000	1.80560100
С	-2.62306000	-2.61412400	3.94375900
С	-3.93651700	-2.43246000	3.51611100
С	-4.29002600	-2.69201000	2.19194600
С	-3.32808900	-3.16922700	1.30088800
С	-2.02955700	-3.36333500	1.75435800
С	-3.60786200	-3.35714000	-0.16426300
0	2.91000500	0.04957300	2.74398300
С	3.79667600	-0.86518200	2.29020300
С	5.10273600	-0.38956900	2.11393900
C	6.10943300	-1.24514700	1.69494800
С	5.82699600	-2.58269900	1.41995000
С	4.52146000	-3.03992400	1.57421300
C	3 49595000	-2 20338200	2.01070000
H	1.57408800	-3.83554200	-2.39464600
Н	3 62699000	-2.12388700	-2 72536600
Н	-4 99040700	-1 17962200	-0 80334900
Н	4 60140800	2 55241400	-0.54675700
Н	3 04405000	4 45622100	0 56867900
Н	-4 24384600	4 12810000	-0 74119700
н	-2 07517100	5 50862700	0 06763000
н	-2 14764600	-3 78930400	-3 30293700
н	-2 41798700	-6 23135300	-3 67824100
н	-1 31820300	-7 84902200	-2 14269500
н	0 07137800	-7 01159300	-0 25929200
н	0 34233100	-4 57401400	0 10986800
ч	-4 97194300	2 66177300	-3 04118300
ч	-7 41593300	3 06541900	-3 21336800
н ц	-8 94082600	2 24044200	-1 43184300
п ц	-8 00091000	1 03183200	0 52691100
11 U	-5 55718000	0 65466900	0.52091100
11 U	4 92723200	-1 33004400	-0 74994100
11 U	7 20044100	_1 /9116300	
n u	8 2/119800	-1.40110300	-1.412/9/00
11 U	6 77492900	1 96791100	-4 06017700
п u	4 39599700	1 00701100	-4.00017700
	4.30300700	1.99701100	-3.40109200
п	1 00225200	0.12037700	-0.94119200
H	1.80323300	0.33334300	0.11/41400
H	0.87292800	6.77551200	2.303/0/00
H	-0.31791100	6.95087700	3.58208600
п		4./223/000	2.31190000
п	-L.33886300	-0.468/1600	1.0/245000
п	-1.08316900	0.04253600	3.38550500
н	0.86591100	-0.88385/00	1.12614800
н	1.64220600	-1.3/826800	3.62330900
н	1.30185500	0.33866300	3.92443200
н	-2.31035400	-2.3/9/1200	4.96095100
H	-4.69166400	-2.06648900	4.21269600
Н	-5.31483000	-2.52263900	1.85030700

Н	-1.24412300	-3.70635600	1.08992000
Н	5.29709000	0.65946100	2.33305900
Н	7.12201500	-0.85934200	1.57133400
Н	6.61531300	-3.25837800	1.08808300
Н	4.28093800	-4.08157300	1.36217100
Н	2.49385600	-2.62001400	2.16096900
Н	-4.68480300	-3.44291600	-0.36648000
Н	-3.12171600	-4.25580400	-0.55444800

2000-**-VA**

	Cod	ordinates (A	ngstroms)
Atom	Х	Ŷ	Z
С	-2.19628900	-2.135933	00 -2.12148000
С	-1.35130500	-3.159741	00 -1.84586500
С	-0.21735300	-2.587521	00 -1.18776700
Ν	-0.32604900	-1.225787	00 -1.09805300
С	-1.58998500	-0.950160	00 -1.59928700
С	-1.19566300	3.459744	00 -0.37805900
Ν	-2.18193500	2.605177	00 -0.63919600
С	-1.57019600	1.343297	00 -0.91011400
С	-0.17889900	1.426954	-0.73643000
С	0.04217400	2.808630	00 -0.47939400
С	3.07791900	-3.534547	0.38064400
С	4.08720800	-2.659823	0.57062400
С	3.60010400	-1.369941	0.14233900
Ν	2.29321800	-1.445944	00 -0.26032700
С	1.98052800	-2.784144	00 -0.17697900
С	3.76178500	3.258191	00 -0.38766300
С	4.62132500	2.223973	00 -0.26026800
С	3.82283800	1.030044	00 -0.16883700
Ν	2.49024300	1.309851	00 -0.31333700
С	2.43896600	2.702888	-0.38044700
С	1.28950000	3.459562	00 -0.38757700
С	0.82592000	-3.360790	00 -0.65959000
С	4.37646100	-0.222792	0.11582300
С	1.35273200	4.934731	00 -0.31877900
С	0.68180300	-4.838918	00 -0.64374800
С	1.99989000	5.583046	0.74099400
С	2.04800700	6.970187	0.80603900
С	1.44707800	7.739879	00 -0.18519700
С	0.79484100	7.110577	00 -1.24103800
С	0.74586400	5.723216	00 -1.30518000
С	-0.28964100	-5.444710	0.16118500
С	-0.42343400	-6.828985	0.16759800
С	0.40129800	-7.622669	00 -0.62474700
С	1.37022100	-7.026727	00 -1.42584800
С	1.50851000	-5.643065	00 -1.43409400
С	5.82465300	-0.324724	0.42461700
С	6.67416600	-1.096971	00 -0.37539200
С	8.02967700	-1.204405	00 -0.08498500
С	8.56458100	-0.537306	00 1.01249800
С	7.73256900	0.234359	1.81802000
С	6.37725400	0.336826	00 1.52752000
Ni	1.06901300	0.022514	-0.62194000
С	-4.67846500	0.412799	2.53759900
С	-5.43273200	-0.931969	2.54852300
0	-5.49381200	-1.504175	3.65202600

0	-5.83455700	-1.31590400	1.41971800
С	-2.99199600	-2.53177500	1.48583700
С	-2.15199100	-2.04637800	2.57155200
С	-1.11857800	-0.98249300	2.36290100
0	-1.89492000	-3.31052700	1.96016600
С	-4.00536500	0.89230800	3.65800300
С	-3.21024100	2.03512000	3.57204100
С	-3.05583000	2.69395800	2.35570700
С	-3.74287400	2.23454100	1.22845800
С	-4.56885300	1.12467500	1.34824100
C	-3.54415100	2.86280000	-0.12421200
Н	-3 16838500	-2 17790200	-2.59737800
Н	-1 47987300	-4.21522600	-2.05289800
Н	-1 41075200	4 48284800	-0.08098900
н	5 07307200	-2 84608600	0.98028900
н	3 98861600	4 31306800	-0.49056000
и и	5 70405000	2 24862600	-0 23277700
и и	2 45483500	2.24002000	1 5261/300
п	2.43403500	4.90044700	1.52014500
н	2.55158600	7.45545500	L.04239200
н	1.48440900	0.02090000	-0.13311400
H	0.32495000	7.70323700	-2.02482500
H	0.24970000	5.23040900	-2.1408/800
H	-0.91968/00	-4.81561100	0./9396200
H	-1.1/846300	-7.28967900	0.80308800
Н	0.28968700	-8.70648700	-0.61691900
H	2.01787500	-7.64049500	-2.05129600
H	2.26129800	-5.16731800	-2.06318600
Н	6.25338800	-1.61402500	-1.23760200
Н	8.67211900	-1.80999700	-0.72320800
Н	9.62644700	-0.61962100	1.24060200
Н	8.13978400	0.75365700	2.68475400
Н	5.72324000	0.93315300	2.16340100
Н	-0.26555100	-1.11712500	3.04270500
Н	-1.54988300	0.01239500	2.54884300
Н	-4.10785300	0.32752600	4.58458700
Н	-2.68251000	2.40223400	4.45309200
Н	-2.39676200	3.56252400	2.28336700
Н	-5.14389000	0.76171100	0.50160200
Н	-0.73502000	-1.00473100	1.33368300
Н	-3.99228000	-2.91214200	1.69888000
Н	-2.85334500	-2.10261600	0.48762800
Н	-2.57455400	-2.12574500	3.57834600
Н	-3.63476500	3.95808500	-0.09088600
Н	-4.28331700	2.49023400	-0.84020200
С	-2.25567500	0.26209400	-1.47525500
H	3 05263400	-4 59684100	0.59349600
C	-3 62515800	0 37981500	-2 03065000
C	-3 85883100	1 24977000	-3 10206800
C	-4 69325500	-0 35568800	-1 50632300
C	-5 13641300	1 391/6700	-3 63069300
С Ц	-3 00436300 0.10041000	1 81840500	-3 51361500
11 C	-3.02430300	1.01040300 0.10505400	- J.
		-0.19000400	-2.02421300
п	-4.56645100	-0.99545900	-0.63009000
	-0.19920800	0.07020100	-3.08/01100
н	-5.30432800	2.0/030400	-4.46620900
Н	-6./9245600	-0./393/400	-1.55427300
Н	-7.20370200	0.79777000	-3.48996000

IntIA (Energy: 18.8 kcal/mol)

	Coc	rdinates (Angs	troms)
Atom	v	v (imgo	
_	A		<u>Ц</u>
С	-2.01285500	-2.96313000	-1.98430800
С	-0.86124700	-3.60325000	-1.66621100
C	0.11829200	-2.58299700	-1 42724700
U NI	0.4220200	1 23562400	1 52/21/00
N	-0.42393600	-1.33563400	-1.534/2800
С	-1.75445500	-1.56197300	-1.83499600
С	-2.83513200	2.65174800	-0.42953200
N	-3 /7373100	1 59260400	-0 93972900
	5.47575100	1.59200400	0.93972900
C	-2.46494400	0.680/9000	-1.38324100
С	-1.19218200	1.21824400	-1.14907800
С	-1.45930700	2.49757300	-0.58346700
C	3 85183500	-2 17490100	-1 34206200
	1.46000000	2.17490100	1.54200200
C	4.46803000	-0.98388500	-1.50028100
С	3.43863400	0.02718200	-1.39420000
Ν	2.20396700	-0.54314900	-1.26482400
C	2 44080700	-1 89281500	-1 21857700
C	2.44000700	1.09201300	1.21057700
C	1.83966600	4.24//1100	-0.29002700
С	2.99642500	3.68265100	-0.69601300
С	2.69555400	2.30907700	-1.01760600
N	1 27155200	2 02755700	0 94766000
N	1.57155200	2.03755700	-0.84/66000
С	0.82414200	3.23630300	-0.39620800
С	-2.76192300	-0.60658100	-1.83297400
C	-0 51366400	3 48000000	-0 20770200
с С	1 47570000	2 97441200	1 20056000
	1.4/5/2500	-2.8/441200	-1.20856000
С	3.69954500	1.38605600	-1.33963500
С	-4.11693400	-0.98640800	-2.30336600
C	-0 96394500	4 77924100	0 33475400
0	1 00520100	1.0000100	0.0000000
	1.89538100	-4.20009100	-0.92823000
С	-4.94491300	-1.85973200	-1.59219600
С	-6.22510700	-2.15186400	-2.05091300
С	-6.69480500	-1.58351300	-3.23072800
C	-5 97200100	_0 72447100	-3 95641600
C	-3.07299100	-0.72447100	-3.95041000
C	-4.59615300	-0.42856300	-3.49444900
С	-1.83023600	5.60668500	-0.39115100
С	-2.25153100	6.82712700	0.12399600
C	_1 81685300	7 24427000	1 37824000
C	1.01000000	7.24427000	1.37024000
С	-0.95844900	6.43091800	2.11192/00
С	-0.53659000	5.21116000	1.59643000
С	2.36347800	-4.57634200	0.35426500
C	2 79293200	-5 96513200	0 66439900
	2.70295200	5.00515200	0.00430000
C	2./40/2500	-6.865//900	-0.30195500
С	2.27941500	-6.56969600	-1.58153800
С	1.86142500	-5.27996600	-1.89215700
C	5 09777900	1 86914700	-1 46516400
	6.04400200	1.000014700	1.40010400
C	6.04400300	1.59108900	-0.4/248500
C	7.34930800	2.05811300	-0.58198300
С	7.73048700	2.81918400	-1.68317700
C	6 79727200	3 10999500	-2 67361700
\sim	5.1J121200	2.10233000	2.07301700
	5.493/8800	2.63802000	-2.36389900
Ni	0.46953100	0.34755400	-1.17166700
С	-4.42625000	-0.67865800	2.61741500
C	-3 46600500	-1 01800300	3 72001600
		1.01000000	1 072021000
U	-3./8650900	-0.81123800	4.8/320600
0	-2.28267700	-1.55872800	3.46020900
С	-1.86760000	-2.12130100	2.19990900
С	-0.64167000	-1.37945100	1,65358800

С	0.44668500	-1.39701600	2.74041200
0	-0.91248500	-0.16166300	1.19224900
С	-5.75463200	-1.03240400	2.85593200
С	-6.74577700	-0.68171500	1.94992400
С	-6.41055400	0.07160500	0.83467500
С	-5.09068000	0.46472300	0.60487400
С	-4.07892600	0.06943600	1.48391500
С	-4.86075600	1.34270200	-0.60352000
0	1.70850800	-1.22813500	2.10084700
С	2.81388600	-1.15479900	2.85989800
С	4.03428200	-1.10019900	2.16887200
С	5.22917900	-1.03913700	2.86547100
С	5.24378000	-1.02682900	4.26123100
С	4.03508000	-1.08016400	4.94252600
С	2.82227800	-1.14660600	4.25911700
H	-2.96904000	-3.39936000	-2.24790100
H	-0.67761900	-4.66976500	-1.61677900
H	-3.39143500	3.45121500	0.05246800
H	4.28456700	-3.16926400	-1.34943400
H	5.52200200	-0.78162600	-1.65572600
H	1.66565500	5.26995200	0.02608500
H	3.98087500	4.13195800	-0.75853400
H	-4.58916500	-2.27848100	-0.65033100
H	-6.86437700	-2.81400900	-1.46805600
H	-7.69937800	-1.81044200	-3.58574100
H	-6.22984000	-0.28180200	-4.88573600
H	-3.94976800	0.25198200	-4.04863800
H	-2.15543100	5.28753300	-1.38127900
H	-2.91649100	7.46001100	-0.46298800
H	-2.14863500	8.19925700	1.78383300
H	-0.61940700	6.74454900	3.09843600
H	0.12239000	4.56448200	2.17430800
Н	2.38429600	-3.78055000	1.10087600
H	3.14256100	-6.08803600	1.66809500
H	3.06831200	-7.87614500	-0.05917900
H	2.25078500	-7.34633500	-2.34540600
H	1.50880800	-5.04027500	-2.89555900
H	5.73265400	1.01097000	0.39767800
H	8.07067400	1.83542000	0.20359900
H	8.75195100	3.18871700	-1.76729300
H	7.08627300	3.70581200	-3.53905000
H	4.75722300	2.86279000	-3.33559500
H	0.46929300	-2.34656100	3.31105700
H	0.25660200	-0.56532300	3.43580200
H	-5.99553800	-1.57944900	3.76544100
H	-7.77925200	-0.98024300	2.12183300
H	-7.18097400	0.35808000	0.11494900
H	-3.01339300	0.29716700	1.30875700
H	4.01206700	-1.12123600	1.07956300
H	6.16598500	-1.00734800	2.30740200
H	6.18573000	-0.97819100	4.80579500
H	4.02386200	-1.07154200	6.03263000
H	1.88893900	-1.18670600	4.81423500
H	-5.30774000	2.33185000	-0.41919900
H	-5.39172200	0.92991800	-1.46992000
H	-2.67478200	-2.06918900	1.45685700
H	-1.64884400	-3.17925200	2.41763600
H	-0.25115100	-2.11576900	0.88533500

IntVA (Energy: 25.1 kcal/mol)

	Coo	rdinates (Angs	troms)
Atom	v	(с_ сс, 7
C	1 06110000	- - - - - - - - - - - - - - - - - - -	1 72050000
L	-1.96118000	-2.77077100	-1./3950900
С	-1.04595900	-3.58708400	-1.15529000
С	-0.00602700	-2.74268000	-0.64374000
N	-0.28524200	-1.43164700	-0.87414600
C	-1 52293200	-1 42792600	-1 49747400
C	1 06064400	2 00022500	0 25145600
C	-1.96964400	2.99832500	-0.33143600
N	-2.72993800	2.04804700	-0.94135800
С	-1.86630500	0.92835300	-1.16084600
С	-0.56791600	1.22322100	-0.71843300
С	-0.65035700	2.57380700	-0.25889500
C	3 68062600	-3 00093300	0 17281900
C	4 52726200	1 00454600	0.17201900
C	4.53730200	-1.90434000	-0.00773400
C	3./2/40900	-0.83408500	-0.4145/300
N	2.41636100	-1.15942800	-0.43186400
С	2.35641700	-2.49155900	-0.09851500
С	2,90613800	3.73337500	-0.04390700
C	3 94298600	2 93674400	-0 37368600
C	2 42440700	1 59564000	0.07000000
C	3.42440700	1.58564000	-0.44846200
Ν	2.0/568800	1.58001/00	-0.26813000
С	1.73140000	2.89450100	-0.00132400
С	-2.30668200	-0.29404100	-1.68896100
С	0.45479200	3.39408400	0.11450100
C	1 21013700	-3 25673700	-0 14107600
C C	1 24613700	0 45753000	-0 56549500
C	4.24013700	0.43733900	-0.30340300
C	-3.5/218900	-0.40093800	-2.44962700
С	0.24858600	4.79361800	0.53515000
С	1.24747800	-4.68991300	0.23735300
С	-3.72556200	0.35056100	-3.62169700
С	-4 90227100	0.29093800	-4.35821200
C	-5 95103100	-0 52146500	-3 93316500
C	5.95103100	1 07004500	2.77250200
C	-5.80844500	-1.27664300	-2.77350200
C	-4.62995500	-1.21/23900	-2.03/62200
С	0.78143400	5.24894400	1.74915700
С	0.59738300	6.56169300	2.16602700
С	-0.13103500	7.45200400	1.38259500
С	-0 66516300	7.01734200	0.17319700
C C	-0.47620100	5 70576300	-0 24564600
C	0.47020100	5.70570500	1 20402000
L	0.46344700	-5.14539/00	1.30403600
С	0.47535000	-6.48460800	1.67444700
С	1.26457200	-7.39753000	0.98026400
С	2.03892400	-6.96031900	-0.08945200
С	2.02732200	-5.61925100	-0.45885600
C	5 71193600	0 60445500	-0 71560000
C C	6 26710700	0.00695500	1 70220200
C	0.30/19/00	-0.00005300	-1.79556200
C	/./4461500	0.09020500	-1.949//200
С	8.50478100	0.80614000	-1.02998800
С	7.87248500	1.41370900	0.05099900
С	6.49541800	1.30841300	0.20909200
Ni	0 87271400	0.05349400	-0.45497600
 C	_/ 307/5000	-0 33436000	2 1/107700
	-4.50/45000	1 01150100	2.1410//00
	-3.00880100	-1.01152100	3.24/80500
0	-4.22256300	-1.56757500	4.13788200
0	-2.28271100	-1.06540000	3.26018300
С	-1.35756900	-0.42967800	2.34167300
С	0.08172700	-0.92792000	2.49907200

С	0.50533700	-0.92484700	3.97059200
0	0.86806800	-0.13040400	1.75465000
С	-5.72336600	-0.74185400	2.03446100
С	-6.55069400	-0.22306900	1.04919300
С	-6.04886200	0.69543800	0.13408900
С	-4.72847900	1.12391300	0.22806500
С	-3.91892900	0.63473800	1.25082900
С	-4.17865900	2.07231300	-0.81113900
Н	-2.87205500	-3.05310700	-2.25394000
Н	-1.04275100	-4.67047300	-1.11416500
Н	-2.42520400	3.92700300	-0.01830700
Н	3.90842400	-4.00935500	0.49888900
Н	5.61780100	-1.98042300	0.02407300
Н	2.90441400	4.80916700	0.09184900
Н	4.97417400	3.21924300	-0.55040100
Н	-2.90190000	0.98818500	-3.94272700
Н	-5.00087400	0.88014900	-5.26917800
Н	-6.87636500	-0.56595200	-4.50630300
Н	-6.62777000	-1.90415300	-2.42372000
Н	-4.52946700	-1.78451100	-1.11238000
Н	1.33345000	4.54398100	2.36941700
Н	1.01733400	6.88883100	3.11661500
Н	-0.28028200	8.47965800	1.71169200
Н	-1.22455200	7.70861100	-0.45684100
Н	-0.86879300	5.37884200	-1.20809000
H	-0.14660500	-4.42358000	1.84778800
H	-0.13305600	-6.81521900	2.51542800
H 	1.2/354400	-8.44/51600	1.27099500
H 	2.65156700	-7.66829600	-0.64/05/00
H	2.62086600	-5.2/818/00	-1.30690500
H	5.76963500	-0.56136600	-2.51690100
H	8.22/12000	-0.39231900	-2./9955800
H	9.58447700	0.88641800	-1.1515/200
H	8.45825400	1.96312800	0.78764200
H	6.00672200	1./0101200	1.0/136500
H	-1.6/2//200	-0.60303600	1.30366200 2.55004100
н	-1.34168700	0.651/1200	2.55094100
п	0.07508700	-2.01219000	2.17009500
п	-0.113/8400	-1.38003200	4.00024000
п	6 09640300	1 47749400	4.30013200
п	-0.08049300	-1.4//40400	2.74739300
п	-6.67471000	1 05707300	-0 69397500
н П	-2 00552700	1 01002100	1 31711300
н Н	-4 A3966A00	3 11185000	-0 56121300
н	-4 65400200	1 85967500	-1 77856300
н	1 55332700	-1 24385300	4 02257000
11	1.0002/00	I.2400000	00007900

1. P. J. Chmielewski, L. Latos-Grażyński, K. Rachlewicz, T. Glowiak, *Angewandte Chemie International Edition in English*, 1994, **33**, 779.

[8] Crystal structure report of 2-NH₂-*m*-C₆H₄-CO₂CH₃NCTPP (i14918; CCDC1889366) General Information

The crystals of **2-NH₂-m-C₆H₄-CO₂CH₃NCTPP** suitable for X-ray diffraction structural analysis were obtained from diffusion of hexane into a solution of the compound in CH₂Cl₂. Diffraction measurements were carried out at 173.0 (2) K on a Bruker SMART Apex CCD diffractometer equipped with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined using full-matrix least-squares methods against F^2 values using the SHELXTL program packages (Version 6.14). The positions of the hydrogen atoms were geometrically generated with a fixed distance and were assigned isotropic thermal parameters by the SHELXTL idealization methods. Refinement was carried out using anisotropic thermal parameters for all the non-hydrogen atoms. The absorption correction program SADABS was used for these three structures. Summary and experimental details for X-ray data collections are provided in Table S1.

Table S1. Crystal data and structure refinement for i14918.			
Identification code	i14918		
Empirical formula	C54 H40 Cl2 N4 O2		
Formula weight	847.80		
Temperature	173.0 (2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 10.2504(6) Å	α= 106.468(3)°.	
	b = 13.7475(7) Å	β= 95.196(3)°.	
	c = 16.1283(10) Å	$\gamma = 105.201(3)^{\circ}$.	
Volume	2069.6(2) Å ³		
Ζ	2		
Density (calculated)	1.360 Mg/m ³		
Absorption coefficient	0.207 mm ⁻¹		
F(000)	884		
Crystal size	0.120 x 0.100 x 0.060 mm ³		
Theta range for data collection	1.740 to 26.373°.		
Index ranges	-12<=h<=12, -17<=k<=17, -20<=l<=20		
Reflections collected	44185		
Independent reflections	8453 [R(int) = 0.0678]		
Completeness to theta = 25.000°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9588 and 0.8323		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8453 / 168 / 560		
Goodness-of-fit on F ²	1.047		
Final R indices [I>2sigma(I)]	R1 = 0.0645, wR2 = 0.1678		
R indices (all data)	R1 = 0.0942, wR2 = 0.1866		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.813 and -0.832 e.Å ⁻³		

Figure S1. Molecular structure of 2-NH₂-*m*-C₆H₄-CO₂CH₃NCTPP from X-ray single structure determination with atoms presented in 30% thermal ellipsoids

