Co-incorporated NiV₂O₆/Ni(HCO₃)₂ nanoflake arrays grown on nickel foam for high-performance supercapacitor

Shaolei Zhao, Keyu Tao and Yun Gong*

Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China Tel: +86-023-65678932 Email: gongyun7211@cqu.edu.cn

Electrochemical measurements

Due to the mass loss of the Ni foam before and after the hydrothermal synthesis, the specific capacity of the as-obtained sample is evaluated by areal capacity. The areal capacity C_A (mAh cm⁻²) or C_A ' (F cm⁻²) of the prepared sample can be calculated by using the equations:

 $C_A = I\Delta t/(3.6S)$ and $C_A' = I\Delta t/(S\Delta V)$ (1)

where 'I' is the discharge current (A), ' Δt ' is the discharge time (s), 'S' is the geometrical area of the active material on Ni foam (cm²), and ' ΔV ' represents the potential window (V).

An asymmetric supercapacitor (ASC) device was assembled in 2 M KOH solution for the two-electrode measurements, in which the obtained Co-incorporated NiV₂O₆/Ni(HCO₃)₂/NF was utilized as positive electrode, and the negative electrode of activated carbon (AC) was prepared as follows: 90 wt % activated carbon (AC) and 10 wt % polyvinylidene fluoride (PVDF) were mixed in N-methylpyrrolidone (NMP), then the resulting slurry was then coated onto a piece of nickel foam (1 cm × 1 cm) and dried at 80 °C in an oven overnight. The loading of the activated carbon (AC) is calculated based on the charge balance: $S_+C_{A+} = S_-C_{A-}$, where S_+/C_{A+} and S_-/C_{A-} refer to the geometrical area (cm⁻²) and areal specific capacity (mAh cm⁻²) of the positive and negative electrodes, respectively. The specific capacity of the ASC device was calculated based on equation 1, in which S represents the geometrical area (cm²) of positive and negative electrodes. The energy density (mWh cm⁻²), power density P (mW cm⁻²) of the device was obtained using equations 2 and 3, respectively:

 $E = \int IV(t)dt/(3.6S)$ (2)

 $P = 3600E/\Delta t$ (3)

where 'V (t)' is discharge voltage. Coulomb efficiency η (%) of the device was calculated using equation 4:

 $\eta = \Delta t / \Delta t_c \tag{4}$

where Δt_c is the charge time (s).

Tuble ST The numes of the sumples synthesized under under enterent conditions.						
	Co(NO ₃) ₂ Na ₃ VO ₄ urea		Solvent			
	(mmol)	(mmol)	(mmol)			
S-0.25-20	0.25	0.25	5	H ₂ O (10 mL)		
S-0.25-15	0.25	0.25	3.75	H ₂ O (10 mL)		
S-0.25-10	0.25	0.25	2.5	H ₂ O (10 mL)		
S-0.5-20	0.5	0.5	10	H ₂ O (10 mL)		
S-0.1-20	0.1	0.1	2	H ₂ O (10 mL)		
S-0.25-20-EW	0.25	0.25	5	H ₂ O /ethanol		
	0.23	0.25	3	(5 mL/5 mL)		

Table ST The names of the samples synthesized under under condition
--

Co-incorporated Ni(HCO ₃) ₂	0.25	/	5	H ₂ O (10 mL)
No product	/	0.25	5	H ₂ O (10 mL)

Fig. S1 SEM image (a) and EDS spectrum (inset: elemental mapping images) (b) of the sample S-0.25-20.

Fig. S2 TEM (a); SAED (b) and HRTEM (c, d) images of the Co-incorporated $NiV_2O_6/Ni(HCO_3)_2/NF$, S-0.25-20.

Fig. S3 XPS of C1s (a), O1s (b), and Co 2p (c) of the Co-incorporated $NiV_2O_6/Ni(HCO_3)_2/NF$, S-0.25-20 before (above) and after 10000 GCD cycles (below).

Fig. S4 Nitrogen adsorption/desorption isotherms (a) and the pore-size distribution curve of the Co-incorporated $NiV_2O_6/Ni(HCO_3)_2/NF$, S-0.25-20 (b).

Fig. S5 The XRD patterns of the precipitations in the autoclave and the standard profile: in the preparation of S-0.25-20 (a) and synthesized in the absence of Na_3VO_4 (b).

Fig. S6 The XRD patterns of S-0.25-10, S-0.25-15, S-0.5-20 and the sample synthesized in ethanol/ H_2O (1: 1) mixed solvent in comparison with that of S-0.25-20.

Fig. S7 EDS and elemental mapping images (inset) for S-0.25-10 (a) and S-0.25-15 (b).

Fig. S8 SEM images for S-0.25-10 (a) and S-0.25-15 (b).

(b)

Fig. S9 CVs at 10 mV s⁻¹ and GCD curves at 1 mA cm⁻² for S-0.25-10, S-0.25-15 (**a**, **b**); S-0.5-20, S-0.1-20 (**c**, **d**) and the Co-incorporated Ni(HCO₃)₂/NF (**e**, **f**) in comparison with S-0.25-20.

(b)

(d)

(c)

Fig. S10 SEM images for S-0.5-20 (a, b), S-0.1-20 (c, d) and Co-incorporated Ni(HCO₃)₂/NF synthesized in the absence of Na₃VO₄ at different magnifications (e, f).

Fig. S11 The XRD pattern of the sample grown on Ni foam synthesized in the absence of Na_3VO_4 and the standard profiles.

Fig. S12 EDS and elemental mapping images (inset) of the Co-incorporated $Ni(HCO_3)_2/NF$.

Scheme S1 The hydrothermal synthetic conditions for Co-incorporated $NiV_2O_6/Ni(HCO_3)_2/NF$ and Co-incorporated $Ni(HCO_3)_2/NF$.

Table S2 The comparison of the capacity, energy density, power density and capacity retention.

	Electrode	Specific	Energy	Electrolyte	Capacity	Ref.
		capacity	density		retention	
1	Ni ₃ V ₂ O ₈ /Co ₃	5.13 F cm ⁻²		2 M KOH	85.1% (1000	10
	V_2O_8	at 2.5 mA cm ⁻			cycles at 25	
		2			$mA cm^{-2}$)	
	a vo	0.40.41		1 1 1 1 100		
2	$Co_3V_2O_8$	0.42 mAh cm^{-1}		$I M L1PF_6$		11
		² at 0.84 mA		in EC:DMC		
		cm ⁻²		(1:1 in		
				volume)		
3	CoV ₂ O ₆	0.669 F cm ⁻		2 M KOH	123.3%	13
		2 at 3 mA cm ⁻			(15000 cycles	

		2			at 15 mA cm ⁻²)	
4	NiV ₂ O ₆ /C	0.75 F cm ⁻²	0.032 m Wh	2 M KOH	77.8% (12000	14
		$at 0.5 \text{ mA cm}^2$	cm^2 at 0.375 mW		cycles at 2 $mA \text{ cm}^{-2}$	
			cm ⁻²			
5	MnCO ₃	3.55 F cm ⁻²	0.116 m Wh	1 M KOH	85.5% (5000	15
	QDs/Ni(HCO	at 6 mA cm ⁻²	cm^{-2} at 1.8		cycles at 30 $m \Lambda cm^{-2}$	
6	$\frac{3}{2}$ -WitCO ₃	3.4 F cm ⁻²		6 М КОН	55% (3750	16
	Ni(HCO ₃) ₂	at 10 mA cm ⁻		0 11 12011	cycles at 10	10
		2			$mA cm^{-2}$)	
7	$Ni_2(CO_3)$	$6.2 \text{ F} \text{ cm}^{-2}$		3 M KOH	<u> </u>	17
	(OH) ₂	at 2.65 mA cm^{-2}				
8	Ni ₃ V ₂ O ₈	0.59 F cm ⁻²	0.035 mWh	6 M KOH	95% (1500	28
	@GO	at 10 mA cm ⁻	cm^{-2} at 0.5		cycles at 5 A	
	COVO	2 0.45 E	$mW cm^{-2}$	0.5 M	g ⁻¹)	20
9	$C@V_2O_5$	$0.45 \text{ F} \text{ cm}^{-2}$	0.009 mwn cm ⁻² at	$V_{\rm s}$		29
		2	0.170 mW	R 2504		
			cm ⁻²			
10	Ni _{0.75} Co _{0.25}	1.18 F cm ⁻² at	0.22 mWh	1 M KOH	98.5% (1000	30
	$(CO_3)_{0.125}$	5 mA cm^{-2}	cm^{-2} at 2.3		cycles at 3 A	
11	$(OH)_2$	7 E am-? at	$mW cm^2$		g^{-1})	21
	$(Cu_{0} \circ Ni_{0} \circ)O$	7 F cm^2 at 35 mA cm^2	cm^{-2} at 0.56	0 M KOH	74.42% (3000 cycles at 5 A	51
	(Cu _{0.2} 1 (1 _{0.8}))	5.5 m cm	$mW \text{ cm}^{-2}$		g ⁻¹)	
12	CoWO ₄ @	2.03 F cm ⁻² at	0.035 mWh	1 M KOH	80% (2000	32
	NiWO ₄	3 mA cm^{-2}	cm ⁻² at 3.27		cycles at 5 A	
			$mW cm^{-2}$		g ⁻¹)	
13	Co-	4.48 F cm^{-2}	0.533 m Wh	2 M KOH	106.2%	This
	incorporated	(0.56 mAh)	cm^{-2} at		(10000 cycles	work
	$1 \times 10^{-1} \text{M}^2 \text{U}_2 \text{U}_6 / \text{M}_2 \text{U}_6 / \text{M}_2 \text{U}_2 \text{U}_$	cm^{-2} at 1 mA	0.232 mW		at 100 mA	
1	$1 \times 1(1 \times 0_3)_2$					

 Table S3 Parameters of the simulated equivalent circuit for the Co-incorporated

 NiV₂O₆/Ni(HCO₃)₂/NF, S-0.25-20 before and after 10000 GCD cycles.

	$R_s/\Omega~cm^{-2}$	Q	$R_{ct}/\Omega~cm^{-2}$	C/F cm ⁻²	R_1/Ω cm ⁻²
Before 10000	1.093	0.0061	2.202	0.001	7336
GCD cycles					
After 10000	1.334	0.0020	4.389	0.003	2072
GCD cycles					

(b)

Fig. S13 CVs at different scan rates (**a**) and GCD curves at different current densities of AC (**b**); The comparative CV curves of S-0.25-20 and AC at the same scan rate of 20 mV s^{-1} .

(b)

Fig. S14 SEM (**a**, **b**) and EDS as well as elemental mapping images (inset) (**c**) for S-0.25-20 after 10000 GCD cycles.

(c)