Supporting Information for

Investigation of a Zirconium Compound for Redox Switchable Ring Opening Polymerization

*Ruxi Dai and Paula L. Diaconescu**

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095

Table of Contents

NMR spectra	S2
Table S1. Homopolymerizations	S16
Table S2. Copolymerizations	S17
GPC traces	S18
Kinetics Study: Mn vs conversion	S28

NMR Spectra

Figure S1. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of [(salfen)Zr(OⁱPr)₂][BAr^F]. δ , ppm: 8.40 (s, 8H, *m*-C₆H₃, BAr^F), 7.68 (s, 4H, *m*-C₆H₃, BAr^F), 7.95 (s, 2H, N=CH), 7.82 (s, 2H, *m*-C₆H₂), 7.11 (s, 2H, *m*-C₆H₂), 4.34 (br, 8H, C₅H₄), 4.02 (s, 6H, CH(CH₃)₂), 3.53 (s, 6H, CH(CH₃)₂), 1.78 (s, 2H, CH(CH₃)₂), 1.62 (s, 18H, C(CH₃)₃), 1.25 (s, 18H, C(CH₃)₃), 0.90 (hexanes). The other hexanes peaks are blocked by the 1.25 ppm product peak.

Figure S2. ¹H NMR (300 MHz, C_6D_6 , 25 °C) spectrum of (salfen)Zr(OⁱPr)₂ (top), [(salfen)Zr(OⁱPr)₂][BAr^F] generated in situ (middle), and (salfen)Zr(OⁱPr)₂ generated from [(salfen)Zr(OⁱPr)₂][BAr^F] (bottom). All the peaks in the top spectrum match those in the bottom spectrum. The extra peaks in the bottom spectrum belong to ^{Ac}Fc and CoCp₂.

Figure S3. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of 100 equivalents of LA polymerization by $(salfen)Zr(O^{i}Pr)_{2}$ (Table 1 entry 1). δ , ppm: 5.02 (t, 1H, CH(CH₃)COO, PLA), 3.91 (t, 1H, CH(CH₃)COO, LA), 1.34 (d, 3H, CH(CH₃)COO, PLA), 1.21 (d, 3H, CH(CH₃)COO, LA).

Figure S4. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of 100 equivalents of VL polymerization by (salfen)Zr(OⁱPr)₂ (Table 1 entry 3). δ , ppm: 3.96 (br, 2H, CH₂COO, PVL), 3.61 (t, 2H, CH₂COO, VL), 2.11 (m, 2H, CH₂CH₂COO, VL), 2.02 (m, 2H, COOCH₂CH₂, VL), 1.55 (br, 2H, CH₂CH₂COO, PVL), 1.43 br, 2H, COOCH₂CH₂, PVL), 1.06 (m, 2H, COOCH₂CH₂, VL), 0.96 (m, 2H, COOCH₂CH₂, PVL).

Figure S5. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of 250 equivalents of VL polymerization by (salfen)Zr(OⁱPr)₂ (Table 1 entry 4). δ , ppm: 3.94 (br, 2H, CH₂COO, PVL), 3.65 (t, 2H, CH₂COO, VL), 2.08 (m, 2H, CH₂CH₂COO, VL), 1.52 (br, 2H, CH₂CH₂COO, PVL), 1.45(br, 2H, COOCH₂CH₂, PVL), 1.10 (m, 2H, COOCH₂CH₂, PVL), 1.01 (m, 2H, COOCH₂CH₂, PVL).

Figure S6. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of 100 equivalents of TMC polymerization by (salfen)Zr(OⁱPr)₂ (Table 1 entry 5). δ , ppm: 4.01 (s, 4H, OCH₂CH₂CH₂O, PTMC), 3.38 (t, 4H, OCH₂CH₂CH₂O, TMC), 1.66 (br, 2H, OCH₂CH₂CH₂O, PTMC), 0.80 (m, 2H, OCH₂CH₂CH₂O, TMC).

Figure S7. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of 100 equivalents of TMC polymerization by *in situ* generated [(salfen)Zr(OⁱPr)₂][BAr^F] (Table 1 entry 6). δ , ppm: 4.14 (s, 4H, OCH₂CH₂CH₂O, PTMC), 3.57 (t, 4H, OCH₂CH₂CH₂O, TMC), 1.81 (br, 2H, OCH₂CH₂CO, PTMC), 1.04 (m, 2H, OCH₂CH₂CH₂O, TMC).

Figure S8. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of 100 equivalents of CHO polymerization by *in situ* generated [(salfen)Zr(OⁱPr)₂][BAr^F] (Table 1 entry 12). δ , ppm: 3.55 (br, 2H, CH₂CH₂CH(O), PCHO), 2.09 (br, 2H, CH₂CH₂CH(O), PCHO), 1.74 (br, 2H, CH₂CH₂CH(O), PCHO), 1.53 (br, 2H, CH₂CH₂CH(O), PCHO), 1.31 (br, 2H, CH₂CH₂CH(O), PCHO).

Figure S9. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of 1000 equivalents of PO polymerization by *in situ* generated [(salfen)Zr(OⁱPr)₂][BAr^F] (Table 1 entry 14). δ , ppm: 7.05 (m, 2H, *m*-C₆H₄, difluorobenzene), 6.95 (m, 2H, *m*-C₆H₄, difluorobenzene), 6.84 (br, 2H, CH₃-C₆H₅, toluene), 6.73 (br, 3H, CH₃-C₆H₅, toluene), 3.44 (br, 3H, OCH(CH₃)CH₂O, PPO), 2.11 (s, 3H, CH₃-C₆H₅, toluene), 1.04 (br, 3H, OCH(CH₃)CH₂O, PPO).

Figure S10. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of PLA-PCHO copolymerization (Table 2 entry 1). δ, ppm: 5.03 (t, 1H, CH(CH₃)COO, PLA), 4.03 (t, 1H, CH(CH₃)COO, LA), 1.35 (d, 3H, CH(CH₃)COO, PLA), 1.24 (d, 3H, CH(CH₃)COO, LA), 3.54 (br, 2H, CH₂CH₂CH(O), PCHO), 2.05 (br, 2H, CH₂CH₂CH(O), PCHO), 1.72 (br, 2H, CH₂CH₂CH(O), PCHO), 1.54 (br, 2H, CH₂CH₂CH(O), PCHO).

Figure S11. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of PLA-PCHO-PLA copolymerization (Table 2 entry 2). δ, ppm: 5.04 (t, 1H, CH(CH₃)COO, PLA), 4.10 (t, 1H, CH(CH₃)COO, LA), 1.33 (d, 3H, CH(CH₃)COO, PLA), 1.25 (d, 3H, CH(CH₃)COO, LA), 3.54 (br, 2H, CH₂CH₂CH(O), PCHO), 2.05 (br, 2H, CH₂CH₂CH(O), PCHO), 1.71 (br, 2H, CH₂CH₂CH(O), PCHO).

Figure S12. ¹H NMR (300 MHz, C₆D₆, 25 °C) spectrum of PTMC-PLA copolymerization (Table 1 entry 3). δ, ppm: 4.34 (t, 1H, CH(CH₃)COO, PLA), 3.54 (t, 1H, CH(CH₃)COO, LA), 1.30 (d, 3H, CH(CH₃)COO, PLA), 1.28 (d, 3H, CH(CH₃)COO, LA), 4.02 (s, 4H, OCH₂CH₂CH₂O, PTMC), 3.54 (t, 4H, OCH₂CH₂CH₂O, TMC), 1.68 (br, 2H, OCH₂CH₂CH₂O, PTMC), 1.00 (m, 2H, OCH₂CH₂CH₂O, TMC).

Figure S13. DOSY NMR for PLA-PCHO copolymer (Table 2 entry 1).

Figure S15. DOSY NMR for a mixture of PLA and PCHO homopolymers.

Entry	Monomer ^b	catalyst	Equiv.	Time	Temp.	Conv.	Exp. Mw	Calcd. Mw	Ð
		oxidation	monomer	(h)	(°C)	(%)	(10 ³ g/mol)	(10 ³ g/mol)	
		state							
1	LA	red	100	24	100	71	6.4	5.5	1.02
2		ох	100	24	25	<3			
3	VL	red	100	24	100	39			
4		red	250	24	100	64	10.8	8.7	1.13
5		ох	100	14	25	<3			
6	ТМС	red	100	24	100	92	10.0	9.4	1.29
7		ох	100	24	25	88	8.7	9.0	1.13
8	PC	red	100	24	100	<3			
9		ох	100	24	25	<3			
10	BL	red	100	24	100	<3			
11		ох	100	24	25	<3			
12	СНО	red	100	24	100	<3			
13		ох	100	0.1	25	100	22	5.0	1.23
14	PO	red	100	24	100	<3			
15		ох	100	24	25	51			
16		ОХ	1000	24	25	88	1.8	30	1.62

Table S1. Homopolymerizations by [(salfen)Zr(OⁱPr)₂] or [(salfen)Zr(OⁱPr)₂][BAr^F].^a

^a All polymerization reactions were done with 4 µmol precatalysts, 0.6 mL of C_6D_6 as a solvent and hexamethylbenzene as an internal standard. ^bVL stands for δ -valerolactone, TMC stands for 1,3-trimethylene carbonate, BL stands for β -butyrolactone, PC stands for propylene carbonate and PO stands for propylene oxide.

Table S2. Redox-controlled copolymerizations.^a

Entry	Monomer	Monomer 2	Monomer 3	catalyst	Exp. Mw	Calcd. Mw	Ð
	1 (conv. %)	(conv. %)	(conv. %)	oxidation state	(10 ³ g/mol)	(10 ³ g/mol)	
1	LA (70 %)	СНО		red-ox	14.0	9.8	1.37
		(100 %)					
2	LA (66 %)	СНО	LA (88%,	red-ox-red	1.72	1.69	1.55
		(100 %)	overall)				
3	TMC (60 %)	LA (87 %)		red-red	14.7	12.4	1.09
4	LA (70 %)	TMC (0 %)		red-red			
5	LA (70 %)	TMC (0 %)		red-ox			

^a All polymerization reactions were done with 4 μ mol precatalysts, 0.6 mL of C₆D₆ as the solvent and hexamethylbenzene as an internal standard. 100 equivalents of monomer was used unless otherwise mentioned. All reactions with [Zr]^{red} were done at 100 °C and all reactions with [Zr]^{ox} were done at 25 °C.

Figure S16. SEC trace for the reaction between 100 equivalents of LA and $(salfen)Zr(O^{i}Pr)_{2}$ (Table 1, entry 1).

Figure S17. SEC trace for the reaction between 250 equivalents of VL and $(salfen)Zr(O^{i}Pr)_{2}$ (Table 1, entry 4).

Figure S18. SEC trace for the reaction between 100 equivalents of TMC and (salfen)Zr(OⁱPr)₂ (Table 1, entry 5).

Figure S19. SEC trace for the reaction between of 100 equivalents of TMC and in situ generated $[(salfen)Zr(O^{i}Pr)_{2}][BAr^{F}]$ (Table 1, entry 6).

Figure S20. SEC trace for the reaction between 100 equivalents of CHO and in situ generated $[(salfen)Zr(O^{i}Pr)_{2}][BAr^{F}]$ (Table 1, entry 12).

Figure S21. SEC trace for the reaction between 1000 equivalents of PO and in situ generated $[(salfen)Zr(O^{i}Pr)_{2}][BAr^{F}]$ (Table 1, entry 14).

Figure S22. SEC trace for the PTMC-PLA copolymer by (salfen)Zr(OⁱPr)₂ (Table 2, entry 3).

Figure S23. SEC trace for the PLA-PCHO copolymers (Table 2, entry 1).

Figure S24. SEC trace for a mixture of PLA homopolymers and PCHO homopolymers.

Figure S25. SEC trace for the PLA-PCHO-PLA triblock copolymer (Table 2, entry 2).

Polymerization Kinetics Study: Mn vs Conversion

Figure S26. Mn vs conversion plot for LA polymerization by (salfen)Zr(OⁱPr)₂.

Table S3. Kinetics stud	y: Mn vs conversion	for LA polymerization by	(salfen)Zr(O ⁱ Pr) ₂ .
-------------------------	---------------------	--------------------------	--

Entry	Conversion	Exp. Mn (10 ³ Da)	Calcd. Mn (10 ³ Da)	Ð
1	35%	4.1	3.1	1.06
2	46%	4.8	4.0	1.03
3	58%	6.0	5.0	1.01
4	64%	5.9	5.5	1.03
5	80%	7.4	6.9	1.05

Figure S27. Mn vs conversion plot for TMC polymerization by $[(salfen)Zr(O^{i}Pr)_{2}][BAr^{F}]$.

Table S4. Kinetics stud	ly: Mn vs conversion for	TMC polymerization b	y [((salfen)Z	r(O ⁱ Pr)	2][BA	r۶]
-------------------------	--------------------------	----------------------	------	-----------	----------------------	-------	-----

Entry	Conversion	Exp. Mn (10 ³ Da)	Calcd. Mn (10 ³ Da)	Ð
1	64%	5.1	6.5	1.03
2	70%	6.5	7.1	1.09
3	77%	7.3	7.8	1.11
4	84%	7.5	8.4	1.06
5	88%	8.7	9.0	1.13