Supplementary Information for

Iridium Porphyrin Complexes with μ -Nitrido, Hydroxo, Hydrosulfido and Alkynyl Ligands

Shiu-Chun So, Wai-Man Cheung*, Wai-Hang Chiu, Matthew de Vere-Tucker, Herman H. Y. Sung, Ian D. Williams*, and Wa-Hung Leung*

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China

*Corresponding authors, E-mail: <u>cheungwm@ust.hk</u>, <u>chleung@ust.hk</u>

Table of Content

	Page no.
1. Crystallographic data and experimental details for 3, 4, 7, 8, 9 and 10	2
2. NMR spectra	3-22
3. Preliminary molecular structure of [Ir(tpp)(PPh ₃)(H ₂ O)](SbCl ₆)	23
4. UV/vis spectra	24-27
5. Cyclic voltammograms	28-30

	$3 \cdot \mathbf{C}_6 \mathbf{H}_{14}$	$4 \cdot CH_2Cl_2$	$7 \cdot 0.5 C_4 H_8 O \cdot 0.5 H_2 O$	8 ∙0.825C ₄ H ₁₀ O	9 ∙0.75C₄H ₈ O	10
Formula	C ₇₅ H ₉₀ Cl ₂ CoIrN ₅ O ₉ P ₃ Ru	C ₆₂ H ₆₅ Cl ₅ CoIrN ₅ O ₉ P ₃ Ru	$C_{128}H_{98}Ir_2N_8O_4P_2$	C _{73.3} H _{56.25} CuIIrN ₄ O _{0.82} P	C ₇₃ H ₅₄ IrN ₄ O _{0.75} P	C ₆₂ H ₄₄ IrN ₄ PS
Formula weight	1721.52	1646.55	2258.48	1419.88	1222.37	1100.24
Crystal system	Triclinic	monoclinic	orthorhombic	monoclinic	orthorhombic	triclinic
Space group	P-1	$P2_1/n$	Pca2 ₁	Pc	Pbca	P-1
a, Å	13.0825(3)	13.4813(2)	26.2427(2)	50.7613(8)	19.8221(4)	10.0055(4)
b, Å	13.8500(5)	29.6101(6)	10.41332(13)	11.4855(2)	21.8692(4)	14.3928(6)
<i>c</i> , Å	20.4656(5)	16.4218(2)	35.1224(3)	20.6642(3)	25.5085(5)	17.7170(7)
α, deg	85.316(2)	90.00	90	90	90	97.827(3)
β , deg	80.0763(19)	101.0227(15)	90	90.0435(13)	90	98.001(3)
γ, deg	78.870(2)	90.00	90	90	90	107.838(4)
<i>V</i> , Å ³	3579.55(17)	6434.3(2)	9598.03(17)	12047.6(3)	11057.7(4)	2361.41(17)
Ζ	2	4	4	8	8	2
$ ho_{\rm calc}, {\rm g \ cm^{-3}}$	1.597	1.700	1.563	1.566	1.469	1.547
<i>Т</i> , К	99.9(4)	99.9(5)	100.10(10)	100.15	100.01(10)	100.00(10)
μ , mm ⁻¹	8.818	10.901	6.115	3.148	2.495	6.568
<i>F</i> (000)	1748.0	3288.0	4552.0	5637.0	4944.0	1104.0
Total reflections	20356	28639	30575	66719	62021	13649
Independent reflections	12629	11287	14064	40951	10817	8385
R _{int}	0.0216	0.0441	0.0284	0.0419	0.1519	0.0269
GoF ^a	1.012	1.003	1.002	1.089	1.001	1.001
$R_{1}^{b} w R_{2}^{c} [I > 2\sigma(I)]$	0.0291, 0.0763	0.0414, 0.1020	0.0267, 0.0655	0.0755, 0.1747	0.0514, 0.1033	0.0246,
R_1 , wR_2 (all data)	0.0312, 0.0777	0.0519, 0.1076	0.0282, 0.0665	0.0923, 0.1876	0.0931, 0.1186	0.0285,

Table S1. Crystallographic data and experimental details for **3**, **4**, **7**, **8**, **9** and **10**.

 ${}^{a}\operatorname{GoF} = [\Sigma w(|F_{o}| - |F_{c}|)^{2}/(N_{obs} - N_{param})]^{\frac{1}{2}} \cdot {}^{b}R_{1} = \Sigma ||F_{o}| - |F_{c}|/\Sigma|F_{o}| \cdot {}^{c}wR_{2} [(\Sigma w|F_{o}| - |F_{c}|)^{2}/\Sigma w^{2}|F_{o}| + |F_{o}|^{2}/\Sigma w^{2}|F_{o}| + |F_{o}$

Figure S1. ¹H NMR (400 MHz, 298 K, CDCl₃) spectrum of **1** (X = impurity, S = residual solvent).

Figure S2. ¹H NMR (400 MHz, 298 K, C_6D_6) spectrum of **2** (X = impurity, S = residual solvent).

Figure S3. ${}^{31}P{}^{1}H$ NMR (162 MHz, 298 K, C₆D₆) spectrum of **2**.

Figure S4. ¹H NMR (400 MHz, 298 K, CDCl₃) spectrum of **3** (X = impurity, S = residual solvent).

Figure S5. ${}^{31}P{}^{1}H$ NMR (162 MHz, 298 K, CDCl₃) spectrum of **3**.

Figure S6. ¹H NMR (400 MHz, 298 K, CDCl₃) spectrum of **4** (X = impurity, S = residual solvent).

Figure S7. ¹H NMR (162 MHz, 298 K, CDCl₃) spectrum of **4**.

Figure S8. ¹H NMR (400 MHz, 298 K, C_6D_6) spectrum of **5** (X = impurity, S = residual solvent).

Figure S10. ¹H NMR (400 MHz, 298 K, acetone- d_6) spectrum of **6** (X = impurity, S = residual solvent).

Figure S11. ³¹P{¹H} NMR (162 MHz, 298 K, acetone- d_6) spectrum of **6**.

Figure S12. ¹⁹F $\{^{1}H\}$ NMR (376.5 MHz, 298 K, acetone- d_{6}) spectrum of **6**.

Figure S13. ¹H NMR (400 MHz, 298 K, C_6D_6) spectrum of 7 (X = impurity, S = residual solvent).

Figure S14. ${}^{31}P{}^{1}H$ NMR (162 MHz, 298 K, C₆D₆) spectrum of 7.

Figure S15. ¹H NMR (400 MHz, 298 K, C_6D_6) spectrum of **8** (X = impurity, S = residual solvent).

Figure S16. ${}^{31}P{}^{1}H$ NMR (162 MHz, 298 K, C₆D₆) spectrum of **8**.

Figure S17. ¹H NMR (400 MHz, 298 K, acetone- d_6) spectrum of **9** (X = impurity, S = residual solvent).

Figure S19. ¹H NMR (400 MHz, 298 K, C_6D_6) spectrum of **10** (X = impurity, S = residual solvent).

Figure S20. ${}^{31}P{}^{1}H$ NMR (162 MHz, 298 K, C₆D₆) spectrum of **10**.

Figure S25. Preliminary molecular structure of [Ir(tpp)(PPh₃)(H₂O)](SbCl₆).

Figure S26. UV/vis spectrum of [Ir(tpp)R] ($R = C_8H_{13}$) (1) in CH_2Cl_2 at room temperature.

Figure S27. UV/vis spectrum of $[Ir(tpp)(C_8H_{13})(PPh_3)]$ (2) in CH₂Cl₂ at room temperature.

Figure S28. UV/vis spectrum of [Ir(tpp)(PPh₃)Cl] (5) in CH₂Cl₂ at room temperature.

Figure S29. UV/vis spectrum of $[Ir(tpp)(PPh_3)(thf)](PF_6)$ (6) in CH_2Cl_2 at room temperature.

Figure S30. UV/Vis spectrum of [Ir(tpp)(PPh₃)(OH)] (7) in CH₂Cl₂ at room temperature.

Figure S31. UV/Vis spectrum of [Ir(tpp)(PPh₃)(SH)] (8) in CH₂Cl₂ at room temperature.

Figure S32. UV/Vis spectrum of $[Ir(tpp)(PPh_3)(\mu - \eta^1: \eta^1-C \equiv CPh)(CuI)]$ (9) in CH₂Cl₂ at room temperature.

Figure S33. UV/Vis spectrum of [Ir(tpp)(PPh₃)(C≡CPh)] (10) in CH₂Cl₂ at room temperature.

Figure S34. CV of [Ir(tpp)R] (R = C₈H₁₃) (1); measured at a glassy carbon electrode in CH₂Cl₂, supporting electrolyte: 0.2 M of $[^{n}Bu_{4}N][PF_{6}]$, scan rate = 100 mVs⁻¹.

Figure S35. CV of $[Ir(tpp)R(PPh_3)]$ (R = C₈H₁₃) (**2**); measured at a glassy carbon electrode in CH₂Cl₂, supporting electrolyte: 0.2 M of $[^{n}Bu_4N][PF_6]$, scan rate = 100 mVs⁻¹.

Figure S36. CV of $[Ir(tpp)(PPh_3)Cl]$ (5); measured at a glassy carbon electrode in CH₂Cl₂, supporting electrolyte: 0.2 M of $[{}^{n}Bu_{4}N][PF_{6}]$, scan rate = 100 mVs⁻¹.

Figure S37. CV of $[Ir(tpp)(PPh_3)(OH)]$ (7); measured at a glassy carbon electrode in CH₂Cl₂, supporting electrolyte: 0.2 M of $[{}^{n}Bu_{4}N][PF_{6}]$, scan rate = 100 mVs⁻¹.

Figure S38. CV of $[Ir(tpp)(PPh_3)(SH)]$ (8); measured at a glassy carbon electrode in CH₂Cl₂, supporting electrolyte: 0.2 M of $[{}^{n}Bu_{4}N][PF_{6}]$, scan rate = 100 mVs⁻¹.

Figure S39. CV of $[Ir(tpp)(PPh_3)(C \equiv CPh] (10)$; measured at a glassy carbon electrode in CH_2Cl_2 , supporting electrolyte: 0.2 M of $[{}^nBu_4N][PF_6]$, scan rate = 100 mVs⁻¹.