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General information

'H NMR spectra were measured on Bruker AM 500 spectrometer. The high resolution electrospray
ionization mass spectra (HR ESI-MS) were recorded on an Bruker MTQ III g-TOF. Thermal
analysis were measured on PerkinElmer Pyris 1 DSC. UV-vis absorption and photoluminescence
spectra were measured on Shimadzu UV-3100 and Hitachi F-4600 spectrophotometer at room
temperature, respectively. Cyclic voltammetry measurements were carried out using chi600
electrochemical workstation with Fc*/Fc as the standard at the rate of 0.1 V s!. The decay lifetimes
were measured with a HORIBA Scientific 3-D fluorescence spectrometer. The ionization potentials
were measured with lonization Energy Measurement System (Model IPS-4) in vacuum with solid
compounds.

X-ray crystallography

X-ray crystallographic measurements of the single crystals were carried out on Bruker APEX-II
CCD diffractometer (Bruker Daltonic Inc.) using monochromated Mo Ka radiation (A =0.71073 A)
at room temperature. Cell parameters were retrieved using SMART software and refined using
SAINT! program in order to reduce the highly redundant data sets. Data were collected using a
narrow-frame method with scan width of 0.30° in ® and an exposure time of 5 s per frame.
Absorption corrections were applied using SADABS? supplied by Bruker. The structures were solved
by direct methods and refined by full-matrix least-squares on F2 using the program SHELXS-2014.

The positions of metal atoms and their first coordination spheres were located from direct-Emaps,
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other non-hydrogen atoms were found in alternating difference Fourier syntheses and least-squares
refinement cycles and during the final cyclesrefined anisotropically. Hydrogen atoms were placed

in calculated positionand refined as riding atoms with a uniform value of Ujs,.
OLEDs fabrication and measurement

All OLEDs were fabricated on the pre-patterned ITO-coated glass substrate with a sheet resistance
of 15 Q sq!. The deposition rate for organic compounds is 1-2 A s!. The phosphor and host were
co-evaporated from different sources. The cathode consisting of LiF/Al was deposited by
evaporation of LiF with a deposition rate of 0.1 A s and then by evaporation of Al metal with a
rate of 3 A s°!. The effective area of the emitting diode is 0.1 cm?. The characteristics of the devices
were measured with a computer controlled KEITHLEY 2400 source meter with a calibrated silicon
diode in air without device encapsulation. On the basis of the uncorrected PL and EL spectra, the
CIE coordinates were calculated using a test program of the spectra scan PR650 spectrophotometer.
Synthesis of ancillary ligand

Hexamethyldisilazane (9.0 mmol) was added dropwise to a solution of chlorodiphenylphosphine
(18.2 mmol) in 40 mL toluene under N, atomsphere at 115 °C. The mixture was stirred for 8 h, and
purified by rapid column chromatography. Then, the white intermediate product and Sg (2.5 mmol)
was dissolved in 20 mL toluene and refluxed for 8 h. The solvent was removed under vacuum, and
the crude product was dissolved in 40 mL CH,Cl,. Aqueous solution of KOH (1 M) was added
dropwise until the pH turned to 7-8. The solution was stirred and concentrated to give the desired

bis(diphenylphorothioyl)amide potassium salt (3.6 mmol, 40% yield).

Table S1 Crystallographic data of complexes (dfppy),Ir(Stpip) and (dfppm),Ir(Stpip).

(dfppy).Ir(Stpip) (dfppm),Ir(Stpip)
formula CH3oN3F4P,SIr Cu4H30NsOF,P,S,Ir
Formula weight 1021 1022.99
Temperature/K 296.15 296.15
Crystal system triclinic monoclinic
Space group P-1 C2/c
a(A) 10.5036(5) 44.788(3)
b(A) 12.3151(7) 15.7609(12)
c(A) 16.8096(9) 26.088(2)
al® 102.2130(10) 90
pl° 98.1790(10) 103.012(2)

y/° 96.3050(10) 90



VIA3 2081.43(19) 17943(2)

VA 2 16

Peatc glem? 1.629 1.515

& (Mo Ko)/mm! 3.44 3.193

F (000) 1008 8064

Reflns collected 11654 61023

Unique 7265 20638

Data/restraints/parameters 7265/0/523 20638/1861/1045

GOF on F? 1.072 1.045
R/ wR[I> 26(1)] 0.0307, 0.0891 0.0401, 0.0878
R/, wRS (all data) 0.0342, 0.0921 0.0718, 0.0973

Ri=E|F-FJl/ZF|. wR = [Ew(F3-F Y Zw(F )]

Table S2 Selected bond lengths and angles of (dfppy),Ir(Stpip) and (dfppm),Ir(Stpip).

Selected bonds Bond Lengths (A) Selected bonds Bond Lengths (A)
Ir,Cp, 2.015(5) Ir,Cy 2.019(5)
Ir)N, 2.066(4) Ir|N; 2.054(3)
I G 2.012(5) I, Cy, 2.012(6)
Ir\N; 2.061(4) IrN, 2.057(3)
Ir,S, 2.486(1) Ir,S, 2.474(1)
Ir,S, 2.486(1) IS, 2.465(2)

Selected Angles ©) Selected Angles ©)

Cplr,C, 90.51(17) Colr,Cy;, 90.80(2)
CplrN, 94.80(17) CoolrN; 92.47(18)
CpalIr N,y 80.51(17) Coolr N3 80.45(18)
Cpolr; S, 83.47(12) Cylr;S, 86.40(15)
SiIr, S, 102.55(4) SiIr, S, 101.25(5)
SN, 89.19(11) SiIr N 93.52(11)
SiIr,C, 83.88(13) SiIr,Csr 82.29(13)
SN, 94.91(12) SiIrN; 92.87(11)
NI S, 89.17(11) NI, S, 89.45(12)
NI, C, 94.85(17) N;lr, Cy, 95.85(18)
C\Ir)N; 79.95(17) CeolrN; 79.65(18)
NI, S, 95.47(12) NI, S, 94.61(13)
NI N, 173.02(15) NI, N; 171.63(15)
Cplr, Sy 172.46(12) Cylr;S, 169.87(14)

CIrS, 172.13(13) Colr'S, 173.51(14)




Table S3 Theoretical calculation data of orbital distribution.

Composition (%)

Complex Orbital
Ir Main Ligands Ancillary ligand
LUMO+2 2.18 7.59 90.24
) LUMO+1 5.98 89.25 4.77
(dfppy)-Ir(Stpip)
LUMO 5.25 77.64 17.11
HOMO 47.46 40.49 12.05
HOMO-1 40.00 14.47 45.52
HOMO-2 35.03 12.90 52.07
HOMO-2 37.42 13.88 48.87
HOMO-1 34.16 16.72 49.25
] HOMO 46.69 33.33 20.02
(dfppm), Lr(Stpip)
LUMO 5.09 80.45 14.5
LUMO+1 6.03 89.63 4.39
LUMO+2 2.68 79.55 17.89
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Fig.S1 The mass spectra of (dfppy),Ir(Stpip).
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Fig.S2 The mass spectra of (dfppm),Ir(Stpip)
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Fig.S3 The '"H NMR spectra of (dfppy),Ir(Stpip).
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Fig.S4 The '*C NMR spectra of (dfppy),Ir(Stpip).
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Fig.S5 The '"H NMR spectra of (dfppm),Ir(Stpip).
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Fig. S7 The lifetime curves of (dfppy),Ir(Stpip) and (dfppm),Ir(Stpip) in degassed CH,Cl, solution at room temperature.
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Fig. S8 Emission spectra of (dfppy),Ir(Stpip) and (dfppm),Ir(Stpip) in CH,Cl, (510~ mol L) at 77 K.
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Fig. S9 Power efficiency-Luminance (7,-L) curves of Dland D2.
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Table S4 Device performances of several reported sky-blue devices.

Device performance

complex
Viarn-on® (V) CIE® (%, y) EQE.ax (%) EQE (%) Roll-off(%) Ref.
(dfppm),IrStpip 34 (0.13, 0.27) 19.4 19.2¢ 1.0 this work
B-CzG2 - (0.16, 0.32) 9.1 7.1¢ 21.9 4
B-CzPO - (0.16, 0.32) 10.8 9.9¢ 8.3 4
(mpmi),Ir(dmpypz) 32 (0.130.18) 15.4 13.6¢ 11.7 5
Ir(pypy)2(Pr) 3 (0.16, 0.24) 14.3 10.8¢ 24.5 6
B-TCz2TPO1 34 (0.18, 0.37) 11.5 10.9¢ 52 7
FK306 2.9 (0.16, 0.25) 153 12.7¢ 17 8
Sfac-6,device 111 4 (0.15, 0.28) 59 - - 9
(fpmptz),Ir(pypz) 2.7 (0.19, 0.27) 2.0 - - 10
Ir(bptz),(bdp) 3 (0.207, 0.440) 17.8 14.0¢ 21.3 11
2c 4.1 (0.179, 0.286) 11 8.44 23.6 12
Ir(mpmi),(pypz) 4.2 (0.14,0.27) 15.2 10.5¢ 30.9 13
(F2CHsppy),Ir(pic-N-oxide) - (0.161, 0.278) 19.6 10.8f 44.9 14
Ir(tpim)s - (0.170, 0.298) 19.2 17.7¢ 7.8 15
Ir(mtpim)s; - (0.166, 0.281) 21.1 19.1¢ 9.5 15
Ir(tpim)s - (0.167, 0.288) 21.3 20.1¢ 5.6 15
Ir(Me-pep)s 33 (0.158, 0.272) 11.6 9.68 17.2 16
Ir('Bu-pep); 3.6 (0.152,0.277) 9.6 9.38 3.1 16

2 The voltage at luminance of 1 ¢cd m™2. ® Commission Internationale de 1'Eclairage 1931 coordinates. ¢ efficiency
recorded at the luminance of 1000 cd m2. defficiency recorded at the luminance of 100 cd m™. © efficiency recorded
at the luminance of 500 cd m™. fvalues collected at a current density of 20 mA cm2. ¢ efficiency recorded at the

luminance of 2000 ¢cd m™2.
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Fig. S11 Chemical structure of the complexes listed in Table S5.
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