Supporting Information for

Mn^{IV}-oxo Complex of a Bis(benzimidazolyl)-containing N5 Ligand Reveals Different Reactivity Trends for Mn^{IV}-oxo than Fe^{IV}-oxo Species

Melissa C. Denler,^{*a*,±} Allyssa A. Massie,^{*a*,±} Reena Singh,^{*b*} Eleanor Stewart-Jones,^{*a*} Arup Sinha,^{*b*} Victor W. Day, ^{*a*} Ebbe Nordlander,^{*b*} and Timothy A. Jackson^{**a*}

^a The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA. ^b Lund University, Chemical Physics, Department of Chemistry, Box 124, SE-221 00 Lund, Sweden.

 \pm These authors made contributions of equal merit.

Content

S.1 XRD Data for Mn ^{II} (OH ₂)(2pyN2B)](OTf) ₂	S4
S.2 Synthesis and Characterization of [Mn ^{II} (OH ₂)(2pyN2B)](ClO ₄) ₂	S4
Table S1 Crystal Data and Structure Refinement for Mn ^{II} (OH2)(2pyN2B)](OTf)2	S5
Table S2 Comparison of Structural Properties of perchlorate and triflate salts of $[Mn^{II}(OH_2)(2pyN2B)]^{2+}$	S6
Figure S1 ESI-MS of [Mn ^{II} (OH ₂)(2pyN2B)](OTf) ₂	S 6
Figure S2 Perpendicular mode EPR of [Mn ^{II} (OH ₂)(2pyN2B)](OTf) ₂	S 6
Figure S3 ESI-MS of [Mn ^{IV} (¹⁶ O)(2pyN2B)] ²⁺ and [Mn ^{IV} (¹⁸ O)(2pyN2B)] ²⁺	S 7
Figure S4 Electronic absorption spectra of the thermal decay of [Mn ^{IV} (O)(2pyN2B)] ²⁺	S7
Figure S5 ESI-MS of the self decay of [Mn ^{IV} (O)(2pyN2B)] ²⁺	S 8
Figure S6 Perpendicular-mode X-band EPR spectra of oxomanganese(IV) species	S 8
Figure S7 Cyclic voltammogram of [Mn ^{IV} (O)(2pyN2B)] ²⁺	S9
Figure S8 XAS pre-edge data and fits for [Mn ^{IV} (O)(2pyN2B)] ²⁺	S9
Figure S9 XANES region for oxomanganese(IV) species	S9
Table S3 Selected DFT-calculated bond lengths for oxomanganese(IV) species	S10
Figure S10 Plots of pseudo-first order rate constants (k_{obs}) vs. DHA concentration for $[Mn^{IV}(O)(2pyN2B)]^{2+}$ in different solvents	S10
Figure S11 Plots of pseudo-first order rate constants (k_{obs}) vs. xanthene concentration for $[Mn^{IV}(O)(2pyN2B)]^{2+}$ and for $[Mn^{IV}(O)(^{DMM}N4py)]^{2+}$	S11
Figure S12 Time trace of the decay of [Mn ^{IV} (O)(2pyN2B)] ²⁺ with DHA and DHA-d4	S11
Figure S13 Plots of pseudo-first order rate constants (k_{obs}) vs. DHA and DHA-d4 concentration for [Mn ^{IV} (O)(2pyN2B)] ²⁺ in different solvents	S12
Figure S14 ESI-MS following the reaction of [Mn ^{IV} (O)(2pyN2B)] ²⁺ with 40 equivalents of DHA	S12
Figure S15 Plots of pseudo-first-order rate constants (k_{obs}) versus DHA concentration for oxomanganese(IV) species, showing experimental data for $[Mn^{IV}(O)(2pyN2Q)]^{2+}$	S13
Figure S16 Electronic absorption spectra of [Mn ^{IV} (O)(2pyN2B)] ²⁺ with 40 equivalents of thioanisole	S14
Figure S17 ESI-MS following the reaction of $[Mn^{IV}(O)(2pyN2B)]^{2+}$ with 40 equivalents of thioanisole	S14

Figure S18 Pseudo-first-order rate constants (k_{obs}) versus thioanisole concentration for oxomanganese(IV) species	S15
Figure S19 Comparison of second-order rate constants for cumene oxidation by oxomanganese(IV) species	S15
Figure S20 Comparison of the rates of reaction of thioanisole with oxomanganese(IV) species and oxoiron(IV) species by N4py and its derivatives	S16
S.3 Analysis of Multiline EPR Signal in the EPR Spectrum of [Mn ^{IV} (O)(2pyN2B)] ²⁺	S16
Figure S21 UV-Vis spectrum of $[Mn^{III}Mn^{IV}(\mu-O)(^{DMM}N4py)_2)]^{2+}$ and EPR spectra of $[Mn^{III}Mn^{IV}(\mu-O)(^{DMM}N4py)_2)]^{2+}$ and $[Mn^{IV}(O)(2pyN2B)]^{2+}$	S17
Table S4. Cartesian Coordinates for [Mn ^{IV} (O)(2pyN2B)] ²⁺ Optimized by DFT Computations	S18
Table S5. Cartesian Coordinates for [Mn ^{IV} (O)(N4py)] ²⁺ Optimized by DFT Computations	S19

S.1 *XRD Data for* $Mn^{II}(OH_2)(2pyN2B)](OTf)_2$. A checkCIF A-alert for $Mn^{II}(OH_2)(2pyN2B)](OTf)_2$ is likely due to a slight disordering of the ether solvent molecule of crystallization. This disorder produces larger thermal parameters for its atoms than those of the metal complex. The structure of $[Mn^{II}(OH_2)(2pyN2B)](ClO_4)_2 \cdot 2CH_3CN$ was also determined (CCDC entry 1891620).

S.2 Synthesis and Characterization of $[Mn^{II}(OH_2)(2pyN2B)](ClO_4)_2$. To a MeCN solution (10) ml) of the ligand (0.047 g, 0.1 mmol), Mn(ClO₄)₂.6H₂O was added and the solution turned pale green. This solution was stirred for 4 hours and was left for slow evaporation of MeCN. After 4-5 days, white colored crystals were isolated. The crystals were washed with MeCN to remove any excess ligand. Crystals were obtained by slow evaporation in MeCN. ESI-MS data for $[Mn(OH_2)(2pyN2B)](ClO_4)_2$ dissolved in MeCN show the following peaks (m/z): 264.02 $[Mn^{II}(2pyN2B)]^{2+}$ (calculated 264.08), corresponding to 563.05 corresponding to $[Mn(2pyN2B)(OH)(H_2O)]^+$ (calculated 563.18) 627.02 corresponding and to $[Mn(2pyN2B)(OH)(H_2O)(CH3OH)_2]^+$ (calculated 627.23). The bond parameters of this structure do not differ significantly from [Mn^{II}(OH₂)(2pyN2B)](OTf)₂ (see Table S2).

Identification	$Mn^{II}(OH_2)(2pyN2B)](OTf)_2$	
CCDC Identification Code	1874429	
Empirical formula	C35H39F6MnN7O8S2	
Formula weight	918.79	
Temperature	228 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	$Pnma - D_{2h}^{16}$ (No. 62)	
Unit cell dimensions	a = 19.166(2) Å	$\alpha = 90.000^{\circ}$
	$\mathbf{b} = 19.200(2) \text{ Å}$	$\beta = 90.000^{\circ}$
	$\mathbf{c} = 11.2881(12) \text{ Å}$	$\gamma = 90.000^{\circ}$
Volume	4153.9(8) Å ³	
Z	4	
Density (calculated)	1.469 g/cm^3	
Absorption coefficient	0.50 mm^{-1}	
F(000)	1892	
Crystal size	$0.450 \ge 0.180 \ge 0.180 \text{ mm}^3$	
Theta range for data collection	2.125 to 28.280°.	
Index ranges	-25≤h≤25, -25≤k≤25, -1	5 <u>≤</u> 1 <u>≤</u> 15
Reflections collected	55690	
Independent reflections	5299 [$R_{int} = 0.059$]	
Completeness to theta = 27.500°	99.9 %	
Absorption correction	Multi-scan	
Max. and min. transmission	1.000 and 0.768	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	5299 / 0 / 331	
Goodness-of-fit on F ²	1.053	
Final R indices [I>2sigma(I)]	$R_1 = 0.048, wR_2 = 0.124$	
R indices (all data)	$R_1 = 0.071, wR_2 = 0.145$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.53 and -0.45 e ⁻ /Å ³	

 Table S1. Crystal Data and Structure Refinement

	[Mn ^{II} (OH ₂)(2pyN2B)](ClO ₄) ₂	$[Mn^{II}(OH_2)(2pyN2B)](OTf)_2$
CCDC Entry Number	1891620	1874429
Mn-O	2.076(7)	2.087(3)
Mn-Nbenzimidazolyl	2.181(5)	2.193(2)
Mn-Nbenzimidazolyl	2.181(5)	2.193(2)
Mn-N _{pyridyl}	2.311(5)	2.298(2)
Mn-N _{pyridyl}	2.311(5)	2.298(2)
Mn-N _{amine}	2.353(7)	2.375(3)
$Mn-N_{equatorial}^{b}$	2.246	2.246
$Mn-N_{total}^{c}$	2.267	2.271

Table S2. Comparison of Structural Properties of perchlorate and triflate salts of $[Mn^{II}(OH_2)(2pyN2B)]^{2+}$.

^{*a*} Average of the Mn–N bond distances in the equatorial positions. ^{*b*} Average of all Mn–N bond distances.

Figure S1. ESI-MS of [Mn^{II}(OH₂)(2pyN2B)](OTf)₂.

Figure S2. Perpendicular mode EPR of 1 mM [Mn^{II}(OH₂)(2pyN2B)](OTf)₂ in TFE at 10K.

Figure S3. ESI-MS of [Mn^{IV}(¹⁶O)(2pyN2B)]²⁺ (left) and [Mn^{IV}(¹⁸O)(2pyN2B)]²⁺ (right).

Figure S4. Electronic absorption spectra showing the thermal decay of 1 mM $[Mn^{IV}(O)(2pyN2B)]^{2+}$ in TFE at 25 °C.

Figure S5. ESI-MS of the self decay of $1 \text{ mM} [\text{Mn}^{\text{IV}}(\text{O})(2\text{pyN2B})]^{2+}$ in TFE.

Figure S6. Perpendicular-mode X-band EPR spectra of $[Mn^{IV}(O)(^{DMM}N4py)]^{2+}$, $[Mn^{IV}(O)(2pyN2B)]^{2+}$, $[Mn^{IV}(O)(N4py)]^{2+}$, and $[Mn^{IV}(O)(2pyN2Q)]^{2+}$. All experiments were carried out at 5 K, except that of $[Mn^{IV}(O)(2pyN2B)]^{2+}$, which was collected at 10 K. Data for $[Mn^{IV}(O)(^{DMM}N4py)]^{2+}$, $[Mn^{IV}(O)(N4py)]^{2+}$, and $[Mn^{IV}(O)(2pyN2Q)]^{2+}$ are from references ¹ and ².

Figure S7. Cyclic voltammogram of $[Mn^{IV}(O)(2pyN2B)]^{2+}$ recorded in TFE with 0.1 M Bu₄NPF₆ electrolyte solution at 50 mV s⁻¹.

Figure S8. Comparison of the normalized XAS pre-edge data (dotted line) and fits (solid line) for the $[Mn^{IV}(O)(2pyN2B)]^{2+}$. The dashed traces represent the fit of the background and fits to the pre-edge peak.

Figure S9. Comparison of experimental XANES regions for $[Mn^{IV}(O)(^{DMM}N4py)]^{2+}$, $[Mn^{IV}(O)(2pyN2B)]^{2+}$, and $[Mn^{IV}(O)(2pyN2Q)]^{2+}$.

	[Mn ^{IV} (O)(2pyN2B)] ²⁺	$[Mn^{IV}(O)(N4py)]^{2+}$	$[Mn^{IV}(O)(^{DMM}N4py)]^{2+a}$	$[Mn^{IV}(O)(2pyN2Q)]^{2+a}$
Mn–O	1.671	1.673	1.678	1.678
Mn-N _X ^b	1.974	2.025	1.988	2.066
Mn-N _X ^b	1.974	2.026	1.989	2.066
Mn-N _{pyridyl}	2.047	2.012	2.041	2.043
Mn–N _{pyridyl}	2.048	2.011	2.041	2.042
Mn-N _{amine}	2.174	2.118	2.108	2.109
Mn–N _{equatorial} ^c	2.011	2.018	2.015	2.054
Mn-N _{total} ^d	2.043	2.038	2.033	2.065
N _{amine} -Mn=O	177.48	179.55	179.76	170.63

Table S3. Selected Bond Lengths (Å) and Bond Angles for Oxomanganese(IV) Complexes $[Mn^{IV}(O)(N4py)]^{2+}, [Mn^{IV}(O)(^{DMM}N4py)]^{2+}, [Mn^{IV}(O)(2pyN2Q)]^{2+}$ and $[Mn^{IV}(O)(2pyN2Q)]^{2+}$ from DFT Computations.

^{*a*} From reference 1. ^{*b*} N_X is N_{benzimidazolyl} for [Mn^{II}(OH₂)(2pyN2B)]²⁺, N_{pyridyl} for [Mn^{II}(OTf)(N4py)]⁺, N_{3,5-} dimethyl-4-methoxypyridyl for [Mn^{II}(OTf)(^{DMM}N4py)]⁺, and N_{quinolinyl} for [Mn^{II}(OH₂)(2pyN2Q)]²⁺. ^{*c*} Average of the Mn–N bond distances in the equatorial positions. ^{*d*} Average of all Mn–N bond distances.

Figure S10. Pseudo-first-order rate constants (k_{obs}) vs. DHA concentration for $[Mn^{IV}(O)(2pyN2B)]^{2+}$ in TFE and TFE/DCM at 25 °C. The lines represent best fits to the data used to determine the second-order rate constants (k_2).

Figure S11. Pseudo-first order rate constants (k_{obs}) vs. xanthene concentration for $[Mn^{IV}(O)(2pyN2B)]^{2+}$ (purple) and for $[Mn^{IV}(O)(^{DMM}N4py)]^{2+}$ (green) in 1:1 TFE:CH₂Cl₂ at 25 °C. The lines represent best fits to the data used to determine the second-order rate constants (k_2).

Figure S12. Time trace of the decay of the 940 nm electronic absorption signal of a 1 mM solution of $[Mn^{IV}(O)(2pyN2B)]^{2+}$ in TFE at 25 °C upon the addition of 30 equivalents DHA dark purple circles) and $[D_4]$ -DHA (light purple squares).

Figure S13. Pseudo-first order rate constants (k_{obs}) vs. DHA (dark purple) and DHA-d4 (light purple) [Mn^{IV}(O)(2pyN2B)]²⁺ in TFE at 25 °C. The lines represent best fits to the data used to determine the second-order rate constants (k_2).

Figure S14. ESI-MS following the reaction of 1.0 mM $[Mn^{IV}(O)(2pyN2B)]^{2+}$ in TFE with 40 equivalents of DHA.

Figure S15. Pseudo-first-order rate constants (k_{obs}) versus DHA concentration for oxomanganese(IV) species, showing experimental data for $[Mn^{IV}(O)(2pyN2Q)]^{2+}$. Rate data for $[Mn^{IV}(O)(^{DMM}N4py)]^{2+}$ and $[Mn^{IV}(O)(2pyN2Q)]^{2+}$ are from reference ¹; data for $[Mn^{IV}(O)(N4py)]^{2+}$ are from reference ².

Figure S16. Electronic absorption spectra showing the reaction of 1.0 mM $[Mn^{IV}(O)(2pyN2B)]^{2+}$ (purple trace) with 40 equivalents of thioanisole in TFE at 25 °C. Inset: decay of the feature at 940nm over time.

Figure S17. ESI-MS following the reaction of 1.0 mM $[Mn^{IV}(O)(2pyN2B)]^{2+}$ in TFE with 40 equivalents of thioanisole.

Figure S18. Pseudo-first-order rate constants (k_{obs}) versus thioanisole concentration for oxomanganese(IV) species showing experimental data for $[Mn^{IV}(O)(2pyN2Q)]^{2+}$. Rate data for $[Mn^{IV}(O)(^{DMM}N4py)]^{2+}$, $[Mn^{IV}(O)(N4py)]^{2+}$, and $[Mn^{IV}(O)(2pyN2Q)]^{2+}$ are from reference ¹.

Figure S19. Comparison of second-order rate constants for cumene oxidation by $[Fe^{IV}(O)(^{DMM}N4py)]^{2+}$, $[Fe^{IV}(O)(N4py)]^{2+}$, and $[Fe^{IV}(O)(2pyN2B)]^{2+}$. Data taken from references ³, ⁴, and ⁵, respectively.

Figure S20. Comparison of the rates of reaction of thioanisole with oxomanganese(IV) at 25°C and oxoiron(IV) species at -40°C supported by N4py and its derivatives. Oxoiron(IV) species (excluding ^{DMM}N4py) are shown in red, oxomanganese(IV) species are shown in blue.

S.3 Analysis of Multiline EPR Signal in the EPR Spectrum of $[Mn^{IV}(O)(2pyN2B)]^{2+}$. The perpendicular-mode EPR spectrum of $[Mn^{IV}(O)(2pyN2B)]^{2+}$ shown in Figure 3 shows a 16-line $Mn^{III}Mn^{IV}$ dimer impurity at g = 2.0, which presumably results from the thermal decay of $[Mn^{IV}(O)(2pyN2B)]^{2+}$. Because both the $Mn^{III}Mn^{IV}$ dimer and Mn^{IV} -oxo species show EPR signals in the g = 2.0 region, spin quantification cannot be used to determine the exact amount of $Mn^{III}Mn^{IV}$ dimer present in the sample. However, using a previously published protocol, we were able to prepare a separate EPR sample for the closely-related $[Mn^{III}Mn^{IV}(\mu-O)(^{DMM}N4py)_2)]^{2+}$ complex.⁶ Recording conditions were 9.637 GHz microwave frequency, 2.0 mW microwave power, 4.55 G modulation amplitude, 100 kHz modulation frequency, and 141 ms time constant. As seen in Figure S21, the $Mn^{III}Mn^{IV}$ signal in the $[Mn^{IV}(O)(2pyN2B)]^{2+}$ sample (Figure 3 and

S21) is very weak, consistent with our assumption that this signal represents a small fraction of Mn in the sample. Spin quantification was used to estimate that 4% of the total amount of Mn in solution is present as a dimer. However, it must be emphasized that this value is likely over estimated due to the overlapping Mn^{IV}-oxo signal at g = 2.0.

Figure S21. A sample of $[Mn^{III}Mn^{IV}(\mu-O)(^{DMM}N4py)_2)]^{2+}$ was prepared in TFE, according to a previously published protocol.⁶ Left: Electronic absorption spectrum of 10mM $[Mn^{III}Mn^{IV}(\mu-O)(^{DMM}N4py)_2)]^{2+}$. Right: 5mM $[Mn^{III}Mn^{IV}(\mu-O)(^{DMM}N4py)_2)]^{2+}$ in TFE (black trace) and 10mM $[Mn^{IV}(O)(2pyN2B)]^{2+}$ (purple trace, see Figure 3 for full spectrum). The $Mn^{III}Mn^{IV}$ signal in the purple trace is very weak compared to that of pure dimer of a closely related complex, suggesting it represents a small fraction of the Mn in the sample.

Atom	x	y Y	I
Mn	-0.00097035663382	0.23022457549271	-0.60243137675133
0	-0.04306675263990	0.41759964354642	1.05757272577181
N	0.12312599294241	0.05209860938857	-2.76588936855174
Ν	-1.92537700337637	0.38798726502742	-1.01215777214240
Ν	-3.59790345194925	0.54791581668974	-2.48756868676180
Ν	2.03351311259927	0.19207611460063	-0.82871069685590
С	-1.18204945278439	0.49972488920407	-3.36974985003010
С	-2.25326594340202	0.45110494286929	-2.31182392906430
С	-3.11611281567467	0.44883307937452	-0.28213349948636
С	-4.18188741045777	0.55207571394838	-1.20819736504342
С	-4.34532616980656	0.66368366218846	-3.74916862061893
С	-5.52114228223479	0.63817473534084	-0.80160693064979
С	-5.75051966823919	0.61920009892809	0.57801880681712
С	-4.68930541040975	0.51757296202600	1.50995945560605
С	-3.35574180494736	0.42905981131732	1.10180566281541
С	1.26224086630206	1.04110661510544	-2.94253424264619
С	2.42377329272527	0.54804749782097	-2.08178453176260
С	2.94676363710445	-0.16030953482708	0.09703033951315
С	4.31300866010966	-0.18077501026841	-0.20889191601382
С	4.72738146774743	0.16919548069245	-1.50035872994253
С	3.76807115771406	0.54480543629904	-2.45715933324680
N	-0.04149917842910	-1./39/90260/6264	-0./2/441915860/5
N	0.06152483467532	-3.61/16060490518	-1.93//0638688253
N	0.24/51165318/49	2.20158826105203	-1.09/669558366/2
C	0.4806/963461/05	-1.36856479608596	-3.11/02148028336
C	-0.25239950581609	-2.20010919290005	0 14866719046906
C	-0 18781184761323	-4 00275311477163	-0 60852905838872
C	0 22222391257045	-4 55030329730928	-3 06341006566399
C	-0.35817784256391	-5.26755054284148	-0.02766353356259
C	-0.59536206581882	-5.28751806719751	1.35053933401939
С	-0.65894739491675	-4.09674907911723	2.11459469193215
С	-0.49075605074528	-2.83747260251772	1.53266296304841
С	0.80846342768646	2.36282152934957	-2.32575341691500
С	-0.10697893531683	3.27305064587622	-0.36241289596025
С	0.07972223732698	4.57363031454978	-0.84688521774973
С	0.64124289912801	4.75366862200693	-2.11707209644554
С	1.01711954311395	3.62947783750489	-2.87338531447491
Н	-1.06313684833705	1.53627388209681	-3.73266220812823
Н	-1.43491929249199	-0.12152843671609	-4.24601340631399
Н	-3.65473636236250	0.58065964176494	-4.59891029969759
H	-5.09222933737218	-0.14379713371336	-3.80654054569848
H	-4.85541401842777	1.63941700452368	-3.78839164835261
H	-6.3462551/9/9383	0./19/9122642154	-1.51439155894029
H	-6.77835380052529	0.68/69613439485	0.94648681642882
H	-4.92340810320859	0.51035019138015	2.5/88491638893/
л u	-2.JZ/00000933402 1 56337/75196207	1 16732751712054	-3 00676516402551
л ц	2 5/872785600702	-0 11122815625606	-3.390/0310403331 1 08383073531/09
н	5 03595047461794	-0 46203133201047	1.00505975551400 0.56168558301909
н	5 78966448708975	0 15885500202328	-1 76426687211040
H	4.06508999271172	0.83601807437826	-3.46893509842401
H	1.56592498088444	-1.41613115355139	-3.31970772680898
Н	-0.03464381955914	-1.67896603837193	-4.04172444769668

Table S4. Cartesian Coordinates for [Mn^{IV}(O)(2pyN2B)]²⁺ Optimized by DFT Computations.

Н	0.36828855310304	-3.98772953495021	-3.99500167409681
Н	-0.68108868284121	-5.17440771200321	-3.15205811694312
Н	1.09799621691548	-5.19500574745335	-2.88691866134319
Н	-0.30813373796553	-6.19131073740234	-0.61017035980153
Н	-0.73431568679252	-6.25004281037415	1.85167455662552
Н	-0.84489297726867	-4.16843447372878	3.19041446127178
Н	-0.53263111095093	-1.91215593833031	2.11214631976379
Н	-0.53033678368097	3.05376430540777	0.62126924255412
Н	-0.20856956527432	5.42780415723255	-0.22845301083924
Н	0.79469877901072	5.76019492672753	-2.51846081108764
Н	1.46837432489423	3.74143870300788	-3.86344842155496

<u>**Table S5.**</u> Cartesian Coordinates for $[Mn^{IV}(O)(N4py)]^{2+}$ Optimized by DFT Computations.

Atom	x	У	Z
Mn	-0.23633646371276	0.60328106557608	0.91458632057475
0	0.18624376401618	2.16543911466274	1.34036633424372
Ν	0.43421312984041	-0.30223186612636	2.58178711605595
Ν	1.48550802625649	0.12612225028571	-0.00871225846301
Ν	-2.13345191346404	0.58217995021707	1.62364209011379
Ν	-1.13231987443518	0.99140771618478	-0.86013086676241
С	0.19280989312914	-1.63978889468179	2.67260674519352
С	-2.89068861939440	-0.37358888148184	1.01662994780429
С	1.52323143716089	-1.10017122781278	-0.60083281027177
Ν	-0.75561114458402	-1.37907045842057	0.37864818316473
С	-1.98966456115381	-0.00354333078124	-1.22243977058740
С	-0.95053402681276	2.06503946821093	-1.65612294114020
С	-2.65801692876309	1.36371822614909	2.58919448782632
С	0.70673286844912	-2.38987967925658	3.73505125332755
С	-4.77084020085366	0.21067269832217	2.39962228836442
С	2.70504279608784	-1.58517051831976	-1.16928802459247
С	-0.72565828032329	-2.22893761985374	1.61780964579224
С	0.20330093301152	-1.84556081888592	-0.68091191821195
С	2.59228030870613	0.90694435631226	0.02227862549224
С	1.16547160317044	0.32802118519923	3.53278476714803
С	1.69192573777111	-0.36486872913064	4.62361351452081
С	-2.15112277463869	-1.05966643243667	-0.13091770227945
С	3.85584864159685	-0.78350180834461	-1.13998173798026
С	-2.49237797213144	1.15057344709359	-3.27384216584020
С	1.46542307679809	-1.74501077507588	4.72287947631398
С	-1.62177108050751	2.17501320672440	-2.87941922646567
С	3.79625656122614	0.48327276814988	-0.54207701022019
С	-3.98528165746621	1.20159842977850	3.00236407164961
С	-4.21855129621158	-0.59074952149901	1.38409998710551
С	-2.68653290246197	0.04151834506394	-2.43002445645423
Н	-0.26616466582444	2.82884032132236	-1.27738044224007
Н	-1.98877902552188	2.12114343107462	3.00609110945982
Н	0.50913448405773	-3.46466241608803	3.79268959287058
Н	-5.80944545366317	0.06179030104581	2.71054836781407
Н	2.72333300081392	-2.57475770871569	-1.63509472725440
Н	-0.43766175703439	-3.26560942655779	1.37412950135833
Н	-1.74887797460305	-2.26812757268335	2.03077332365422
Н	0.35708302000294	-2.93595996226629	-0.61621153454300
Н	-0.25138344137920	-1.64223567219133	-1.66671509006290
Н	2.46571768647782	1.87365397331598	0.51728910732544
Н	1.30628691188510	1.40154036252504	3.37638398497758

Н	2.27461644915710	0.17247661406573	5.37716816283863
Н	-2.69434606145817	-1.94713761182281	-0.49690950629178
Н	4.78935767645011	-1.14625842975516	-1.58108344123076
Н	-3.02399888189002	1.21174032225063	-4.22829780332844
Н	1.87444550117795	-2.31657008641444	5.56196721762989
Н	-1.46246302110947	3.05695617483135	-3.50617150268894
Н	4.67188967138323	1.13733218222497	-0.50499241062410
Η	-4.39142678698938	1.84992598098266	3.78387072268048
Н	-4.81371305336651	-1.36461459557718	0.89026864591723
Н	-3.36905835887215	-0.76687184739008	-2.70940224368414

References

1. Massie, A. A.; Denler, M. C.; Cardoso, L. T.; Walker, A. N.; Hossain, M. K.; Day, V. W.; Nordlander, E.; Jackson, T. A., Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)-Oxo Complexes. *Angew. Chem., Int. Ed. Engl.* **2017**, *56* (15), 4178-4182.

2. Leto, D. F.; Ingram, R.; Day, V. W.; Jackson, T. A., Spectroscopic properties and reactivity of a mononuclear oxomanganese(iv) complex. *Chem. Commun.* **2013**, *49* (47), 5378-5380.

3. Rana, S.; Dey, A.; Maiti, D., Mechanistic elucidation of C-H oxidation by electron rich non-heme iron(iv)-oxo at room temperature. *Chem. Commun.* **2015**, *51* (77), 14469-14472.

4. Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.; Stubna, A.; Kim, J.; Münck, E.; Nam, W.; Que Jr., L., Nonheme FeIVO Complexes That Can Oxidize the C–H Bonds of Cyclohexane at Room Temperature. *J. Am. Chem. Soc* **2004**, *126* (2), 472-473.

5. Mitra, M.; Nimir, H.; Demeshko, S.; Bhat, S. S.; Malinkin, S. O.; Haukka, M.; Lloret-Fillol, J.; Lisensky, G. C.; Meyer, F.; Shteinman, A. A.; Browne, W. R.; Hrovat, D. A.; Richmond, M. G.; Costas, M.; Nordlander, E., Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions. *Inorg. Chem.* **2015**, *54* (15), 7152-7164.

6. Lee, Y.; Jackson, T. A., Ligand Influence on Structural Properties and Reactivity of Bis(μ -oxo)dimanganese(III,IV) Species and Comparison of Reactivity with Terminal MnIV-oxo Complexes. *ChemistrySelect* **2018**, *3* (47), 13507-13516.