Supporting Information

Effectively Immobilize Lead through Melanotekite Structure Using

Low-Temperature Glass-Ceramic Sintering

Ying Zhou,^a Changzhong Liao,*^{a, b} Zhengyuan Zhou,^a ChungKai Chang,^c and Kaimin Shih*^a

^a Department of Civil Engineering, The University of Hong Kong, Pokfulam Road,

Hong Kong, HKSAR, China

^b Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and

Management, Guangdong Institute of Eco-Environmental Science & Technology,

Guangzhou, China

^c National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu,

Taiwan

*Corresponding author: Professor Kaimin Shih, E-mail: <u>kshih@hku.hk</u>; Tel: +852 28591973; Fax: +852 25595337.

Dr. Changzhong Liao, E-mail: liaocz29@connect.hku.hk

(9 pages including 1 text, 3 tables and 5 figures)

List of Supporting Information

Text S1. Synthesis of Fe₃O₄@SiO₂ nano composites

Table S1. Quality of the Rietveld refinement analyses in quantifying the phase compositions of the sintered products from the PbO/SiO₂/hematite (PSH) and PbO/SiO₂/magnetite (PSM) system sintered under different temperatures for 5 h. The values indicate the pattern factors and the goodness-of-fit (R_{exp} , R_{wp} , R_p , and *GOF*)

Table S2. Chemical compositions obtained by EDX for the observed areas in Figure 5

Table S3. Parameters for the adsorption process by $Fe_3O_4@SiO_2$ adsorbent treating aqueous solutions of different Pb concentrations

Figure S1. Elemental mapping of PbO/SiO₂/hematite samples sintered at (a) 850° C and (b) 950° C. Area A and B corresponded to melanotekite and amorphous phase; area C and D corresponded to hematite and amorphous phase.

Figure S2. The pH variations in the prolonged leaching tests for the thermally treated PbO/SiO_2 /hematite samples sintered at different temperatures.

Figure S3. Lead leachability from the thermally-treated PbO/SiO₂/hematite samples after sintering at 500-950 °C for 5 h with their corresponding $Pb_2Fe_2Si_2O_9$ contents. The leaching solution was TCLP extraction fluid no. 1 (acetic acid solution) with the pH of 4.9 and the contact time of 18 h.

Figure S4. Characterization of synthetic $Fe_3O_4@SiO_2$. (a) XRD pattern of the prepared $Fe_3O_4@SiO_2$; (b) FT-IR spectrum of $Fe_3O_4@SiO_2$; (c) TEM image of the core shell $Fe_3O_4@SiO_2$ structure and (d) electronic diffraction pattern of the as-synthesized $Fe_3O_4@SiO_2$.

Figure S5. XRD patterns of the spent $Fe_3O_4@SiO_2$ adsorbents treating different Pb concentration solutions.

Text S1. Synthesis of Fe₃O₄@SiO₂ nano composites

For the synthesis of Fe₃O₄@SiO₂ nano-composites, 2.0 g ferrous chloride hydrate (FeCl₂·4H₂O, Alfa Aesar China, Ltd) and 5.4 g ferric chloride hydrate (FeCl₃·6H₂O, Sigma-Aldrich) were dissolved in 100 ml deionized water with magnetic stirring under N₂ atmosphere in a three-necked flask. About 50 ml ammonia (NH₃·H₂O, 30-33 wt. %, E. Merck, Ltd) was added into the FeCl₂-FeCl₃ solution drop-by-drop to keep the pH at 10.0. The reactive system was maintained at 50 °C by water bath for 2 h. Then 125 ml solution containing Fe₃O₄ nanoparticles was ultrasonically dispersed with 300 ml ethanol (95%, BDH Merck Chemical Co.) in a 500 ml beaker flask. After 5 min ultrasonic dispersion, 0.5 ml tetraethyl orthosilicate (TEOS, Alfa Aesar China, Ltd) was added to Fe₃O₄-NH₃-H₂O-Ethanol solution. The reaction solution was kept in ultrasonic condition with ice bath for about 2 h. Raw products were collected by magnet and washed by deionized water for several times. The final product of Fe₃O₄@SiO₂ was obtained after raw material was dried in oven at 60 °C for 12 h. The materials obtained are referred as Fe₃O₄@SiO₂ nanoparticles. **Table S1.** Quality of the Rietveld refinement analyses in quantifying the phase compositions of the sintered products from the PbO/SiO₂/hematite (PSH) and PbO/SiO₂/magnetite (PSM) system sintered under different temperatures for 5 h. The values indicate the pattern factors and the

Temperature	Quality of Refinement Analysis (PSH system)					
(°C)	$R_{exp}^{(a)}(\%)$	$R_{wp}^{}\left(a\right)\left(\%\right)$	$R_{p}^{(a)}(\%)$	GOF ^(b)		
500	2.09	4.99	3.70	2.39		
600	2.25	4.62	3.55	2.05		
650	2.14	3.76	2.91	1.76		
700	2.11	4.11	2.93	1.95		
750	2.15	4.06	3.04	1.88		
800	2.13	4.16	3.16	1.95		
850	2.11	3.89	3.01	1.85		
900	2.10	3.90	3.00	1.85		

goodness-of-fit (R_{exp} , R_{wp} , R_p , and GOF)

Temperature	Quality of Refinement Analysis (PSM system)					
(°C)	$R_{exp}^{(a)}(\%)$	$R_{wp}^{(a)}$ (%)	$R_{p}^{(a)}(\%)$	GOF ^(b)		
500	2.09	4.81	3.61	2.31		
600	2.10	4.64	3.51	2.21		
650	2.14	3.83	2.94	1.79		
700	2.12	3.81	2.92	1.80		
750	2.13	3.88	3.01	1.82		
800	2.12	4.19	3.16	1.97		
850	2.12	3.93	3.01	1.85		
900	2.11	3.97	3.04	1.88		

Note:

$$(a)_{R_{P}} = \frac{\sum |Y_{i}(obs) - Y_{i}(calc)|}{\sum Y_{i}(obs)} , R_{WP} = \left\{ \frac{\sum \omega_{i} [Y_{i}(obs) - Y_{i}(calc)]^{T}}{\sum \omega_{i} [Y_{i}(obs)]^{T}} \right\}^{1/2} , R_{exp} = \left\{ \frac{\sum M - P}{\sum \omega_{i} [Y_{i}(obs)]^{2}} \right\}^{1/2}$$

$$GOF = chi^{2} = \frac{R_{WP}}{R_{exp}} = \left\{ \frac{\sum \omega_{i} [Y_{i}(obs) - Y_{i}(calc)]^{2}}{M - P} \right\}^{1/2}$$

where $Y_{i(obs)}$ and $Y_{i(calc)}$ are the observed and calculated data, respectively, at data point m; M is the number of data points; P is the number of parameters; i is the corresponding data point; ω_i is the weighting given to data point m. The counting statistics is given by $\omega_i = 1/\delta(Y_{i(obs)})^2$, where

- $\delta(Y_{i(obs)})$ is the error in $Y_{i(obs)}$.
- (b) The goodness of fit (GOF) indicated the fitting quality and it is generally considered that the
- GOF value between 1.0 and 2.9 is satisfactory.

Area	Pb		Fe		Si		0	
	(wt. %)	(Atom %)						
1	58.07	15.35	18.98	18.61	8.49	16.55	14.46	49.50
2	59.57	16.29	18.37	18.63	8.56	17.26	13.51	47.82
3	70.80	20.09	4.58	4.82	9.74	20.40	14.88	54.69
4			73.18	43.87	_	_	26.82	56.13

Table S2. Chemical compositions obtained by EDX for the observed areas in Figure 5

Table S3. Parameters for the adsorption process by $Fe_3O_4@SiO_2$ adsorbent treating aqueous

solutions of different Pb concentrations

Pb concentration	Initial pH	Adsorbed Pb (mg)	m _(adsorbent) (mg)	Removal efficiency (%)
1000 ppm	6.56	18.1	100	67.5
100 ppm	6.60	3.22	100	99.7
10 ppm	6.63	0.36	100	99.5

Figure S1. Elemental mapping of PbO/SiO₂/hematite samples sintered at (a) 850° C and (b) 950° C. Area A and B corresponded to melanotekite and amorphous phase; area C and D corresponded to hematite and amorphous phase.

Figure S2. The pH variations in the prolonged leaching tests for the thermally treated PbO/SiO₂/hematite samples sintered at different temperatures.

Figure S3. Lead leachability from the thermally-treated PbO/SiO₂/hematite samples after sintering at 500-950 °C for 5 h with their corresponding Pb₂Fe₂Si₂O₉ contents. The leaching solution was TCLP extraction fluid no. 1 (acetic acid solution) with the pH of 4.9 and the contact time of 18 h.

Figure S4. Characterization of synthetic $Fe_3O_4@SiO_2$. (a) XRD pattern of the prepared $Fe_3O_4@SiO_2$; (b) FT-IR spectrum of $Fe_3O_4@SiO_2$; (c) TEM image of the core shell $Fe_3O_4@SiO_2$ structure and (d) electronic diffraction pattern of the as-synthesized $Fe_3O_4@SiO_2$.

Figure S5. XRD patterns of the spent $Fe_3O_4@SiO_2$ adsorbents treating different Pb concentration solutions.