Supporting Information Table of Contents

Synthesis of Helical Aluminium Catalysts for Cyclic Carbonate Formation

Figure S1. NMR Spectra for complex 7 in C_6D_6	S 1
Crystallographic data and selected interatomic distances and angles for compound 1	S3
Table S1. Crystallographic data for compound 1	S3
Table S2. Selected interatomic distances and angles for compound 1	S4
Figure S2. <i>M</i> and <i>P</i> enantiomers of compound 1 in the unit cell.	S5
Table S3 . Non-covalent interactions found in complex 1. β is the angle formed by H–centroid and H–	plane
lines in the case of the CH π interaction. α is the dihedral angle formed by the plane of the two rings	of the
π - π stacking	S5
General procedures for cyclic carbonates synthesis and polyether-polycarbonates	S6
NMR Spectra for styrene carbonate 10a in CDCl ₃	S7
NMR Spectra for propylene carbonate 10b in CDCl ₃	S 8
NMR Spectra for 1,2-butylene carbonate 10c in CDCl ₃	S9
NMR Spectra for 1,2-hexylene carbonate 10d in CDCl ₃	S10
NMR Spectra for 1,2-decylene carbonate 10e in CDCl ₃	S11
NMR Spectra for 4-chlorostyrene carbonate 10f in CDCl ₃	S12
NMR Spectra for 4-bromostyrene carbonate 10g in CDCl ₃	S13
NMR Spectra for glycerol carbonate 10h in DMSO- d_6	S14
NMR Spectra for 3-chloropropylene carbonate 10i in CDCl ₃	S15
NMR Spectra for 3-phenoxypropylene carbonate 10j in CDCl ₃	S16
NMR Spectra for cyclopentene carbonate 12a in CDCl ₃	S17
NMR Spectra for <i>cis</i> -2,3-butene carbonate 12b in CDCl ₃	S18
NMR Spectra for <i>trans</i> -2,3-butene carbonate 12c in CDCl ₃	S19
NMR Spectra for <i>trans</i> -1,2-diphenylethylene carbonate 12d in CDCl ₃	S20
NMR Spectra for <i>trans</i> -1-phenyl-2-methylethylene carbonate 12e in CDCl ₃	S21
¹ H NMR spectrum for polyether-polycarbonate 12f derived from CHO and CO_2 in $CDCl_3$	S22
IR NMR spectrum for polyether-polycarbonate 12f derived from CHO and CO ₂	S22
References	S23

Figure S1. NMR Spectra for complex 7 in C_6D_6

Crystallographic data and selected interatomic distances and angles for compound 1

Crystal data and structure refinement for I Compound 1					
Formula	C ₄₀ H ₄₉ Al ₂ N ₅ S				
M	685.86				
CCDC	1884536				
Crystal System	Monoclinic				
Space group	$P2_{1}/c$				
<i>T</i> [K]	100				
a [Å]	16.119(5)				
<i>b</i> [Å]	24.785(5)				
c [Å]	21.326(4)				
α [deg]	90				
β [deg]	115.151(16)				
γ [deg]	90				
V [Å ³]	7712(3)				
Z	8				
Density [gcm ⁻³]	1.181				
μ [mm ⁻¹]	0.164				
Observed reflections	39723				
R _{int}	0.0636				
$R1^{b} / wR2^{c} [I > 2\sigma(I)]$	0.0842 / 0.2258				
R1 ^b / wR2 ^c (all data)	0.1092 / 0.2461				
GoF	1.106				
Largest diff. pk and hole [eÅ-3]	0.995 and -0.554				
$\frac{1}{3\Omega - [\nabla_{\text{res}}(E_2 - E_2)^2 / (N - N - m)]^{1/2} h - \nabla E_1 E_1 / \nabla E_1 }$					

 Table S1. Crystal data and structure refinement for 1

 ${}^{a}S = [\Sigma w(F_{0}{}^{2} - F_{c}{}^{2})^{2} / (N_{obs} - N_{para}m)]^{1/2} \cdot {}^{b}R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|.$

 ${}^{c}wR_{2} = \left[\Sigma w(F_{0}{}^{2} - F_{c}{}^{2})^{2} / \Sigma wF_{0}{}^{2}\right]^{1/2}w = 1/[\sigma^{2}(F_{0}{}^{2}) + (aP)^{2} + bP] \text{ where } P = (max(F_{0}{}^{2}, 0) + 2F_{c}{}^{2})/3$

Bond distance	es (Å)	Bond angles (°)	
S(1A)–Al(1)	2.295(2)	Al(1)–S(1A)–C(14A)	97.9(2)
S(1A)–C(14A)	1.775(5)	S(1A)-Al(1) -N(1A)	95.0(1)
Al(1)–N(1A)	1.957(6)	S(1A)–Al(1)–C(1A)	118.3(2)
Al(1)–C(1A)	1.970(6)	S(1A)-Al(1)-C(2A)	105.5(2)
Al(1)–C(2A)	1.955(7)	N(1A)-Al(1)-C(1A)	107.3(2)
Al(2)–N(4A)	1.966(4)	N(1A)-Al(1)-C(2A)	112.2(2)
Al(2)–N(5A)	1.897(5)	C(1A)-Al(1)-C(2A)	116.6(3)
Al(2)–C(1AA)	1.969(5)	N(4A)-Al(2)-N(5A)	92.5(2)
Al(2)–C(2AA)	1.957(7)	N(4A)-Al(2)-C(1AA)	110.5(2)
N(1A)–N(2A)	1.384(6)	N(4A)-Al(2)-C(2AA)	108.5(2)
N(1A)-C(4A)	1.345(7)	N(5A)-Al(2)-C(1AA)	110.9(2)
N(2A)–C(6A)	1.350(8)	N(5A)-Al(2)-C(2AA)	113.9(2)
N(2A)–C(13A)	1.432(6)	C(1AA)–Al(2)–C(2AA)	117.7(2)
N(3A)–N(4A)	1.386(5)	Al(1)–N(1A)–N(2A)	118.4(3)
N(3A)–C(9A)	1.371(6)	Al(1)–N(1A)–C(4A)	132.7(4)
N(3A)–C(13A)	1.429(6)	N(2A)-N(1A)-C(4A)	106.1(4)
N(4A)–C(11A)	1.345(6)	N(1A)-N(2A)-C(6A)	110.2(4)
N(5A)–C(14A)	1.369(5)	N(1A)-N(2A)-C(13A)	121.9(4)
N(5A)–C(15A)	1.421(7)	C(6A)-N(2A)-C(13A)	127.6(4)
		N(4A)-N(3A)-C(9A)	109.7(4)
		N(4A)-N(3A)-C(13A)	121.5(4)
		C(9A)-N(3A)-C(13A)	128.8(4)
		Al(2)–N(4A)–N(3A)	117.6(3)
		Al(2)–N(4A)–C(11A)	133.6(4)
		N(3A)-N(4A)-C(11A)	106.7(4)
		Al(2)–N(5A)–C(14A)	117.8(3)
		A(12)-N(5A)-C(15A)	120.2(4)
		C(14A)–N(5A)–C(15A)	120.3(4)

 Table S2.
 Selected interatomic distances and angles for compound 1

Figure S2. M (left) and P (right) enantiomers of compound 1 in the unit cell.

Table S3. Non-covalent interactions found in complex 1. β is the angle formed by H–centroid and H–plane lines in the case of the CH… π interaction. α is the dihedral angle formed by the plane of the two rings of the π – π stacking.

CH…π interactions							
Groups	d(H centroid) Å	d(H…plane) Å	β°				
(C7)H7A2ph(C15B-C24B)	3.3	3.2	16.5				
ph(C15A-C24A)(C7)H7B2	3.3	3.2	9.9				
π–π stacking							
Groups	d(Ct […] Ct) Å	d(Ct plane) Å	α°				
pz(N1A-N2A)…ph(C19B-C24B)	3.9	3.6	4.6				
ph(C19A-C24A) pz(N1B-N2B)-	3.9	3.5	4.9				

General procedures for cyclic carbonates synthesis and polyether-polycarbonates General procedure for synthesis of cyclic carbonates at 1 bar pressure

An epoxide 9a-j (1.7 mmol), complex 2 (46.3 mg, 83.0 µmol) and Bu₄NBr (26.7 mg, 83.0 µmol) were placed in a sample vial fitted with a magnetic stirrer bar and placed in a large conical flask. Cardice pellets were added to the conical flask which was fitted with a rubber stopper pierced by a deflated balloon. The reaction mixture was stirred for 24 h at 25 °C for epoxides 9a-e,h-j or 50 °C for epoxides 9f,g. The conversion of epoxide into cyclic carbonate was then determined by analysis of a sample by ¹H-NMR spectroscopy. The remaining sample was filtered through a plug of silica, eluting with CH₂Cl₂ to remove the catalyst. The eluent was evaporated *in vacuo* to give either the pure cyclic carbonate or a mixture of cyclic carbonate and unreacted epoxide. In the latter case, the mixture was purified by flash chromatography using a solvent system of first hexane, then hexane-EtOAc (9:1), then hexane-EtOAc (3:1), then EtOAc to give the pure cyclic carbonate. Cyclic carbonates 10a-j are all known compounds and the spectroscopic data for samples prepared using complex 2 were consistent with those reported in the literature.¹

General procedure for synthesis of cyclic carbonates at 10 bar pressure

An epoxide **11a**–**e** (1.7 mmol), complex **2** (9.3 mg, 17.0 μ mol) and Bu₄NBr (5.3 mg, 17.0 μ mol) were placed in a stainless steel pressure reactor with a magnetic stirrer bar. The reactor was pressurised to 10 bar of carbon dioxide and the reaction mixture was stirred 50–90 °C for 16 h. Then the conversion of epoxide into cyclic carbonate **11a–e** was determined by analysis of a sample by ¹H-NMR spectroscopy. The remaining sample was filtered through a plug of silica, eluting with CH₂Cl₂ to remove the catalyst. The eluent was evaporated *in vacuo* to give a mixture of cyclic carbonate and unreacted epoxide. The mixture was purified by flash chromatography using a solvent system of first hexane, then hexane-EtOAc (9:1), then hexane-EtOAc (3:1), then EtOAc to give the pure cyclic carbonate. Cyclic carbonates **12a–e** are all known compounds and the spectroscopic data for samples prepared using complex **2** were consistent with those reported in the literature.¹

General procedure for synthesis of polyether-polycarbonate

Cyclohexene oxide (0.98 g, 10.0 mmol), complex 2 (0.0–55.7 mg, 0.0–0.1 mmol) and Bu_4NBr (0.0–96.7 mg, 0.0–0.3 mmol) were placed in a stainless steel reactor with a magnetic stirrer bar. The autoclave was sealed, pressurised to 5 bar with CO₂, heated to the desired temperature and then pressurised to 10-40 bar with CO₂. The reaction mixture was subsequently stirred at 50–90 °C for 24 h. The conversion of cyclohexene oxide into cyclohexene carbonate **12f**, polyether or polyether-polycarbonate was determined by analysis of a sample by ¹H NMR spectroscopy.¹

NMR Spectra for propylene carbonate 10b in CDCl₃

NMR Spectra for 1,2-butylene carbonate 10c in CDCl₃

NMR Spectra for 1,2-hexylene carbonate 10d in CDCl₃

NMR Spectra for 1,2-decylene carbonate 10e in CDCl₃

S11

NMR Spectra for 4-bromostyrene carbonate 10g in CDCl₃

NMR Spectra for glycerol carbonate 10h in DMSO- d_6

NMR Spectra for 3-chloropropylene carbonate 10i in CDCl₃

NMR Spectra for 3-phenoxypropylene carbonate 10j in CDCl₃

NMR Spectra for *cis*-2,3-butene carbonate **12b** in CDCl₃

NMR Spectra for *trans*-1,2-diphenylethylene carbonate **12d** in CDCl₃

NMR Spectra for *trans*-1-phenyl-2-methylethylene carbonate **12e** in CDCl₃

 $^1\mathrm{H}$ NMR spectrum for polyether-polycarbonate 12f derived from CHO and CO_2 in CDCl_3

IR NMR spectrum for polyether-polycarbonate **12f** derived from CHO and CO₂

References

 (a) J. A. Castro-Osma, C. Alonso-Moreno, A. Lara-Sánchez, J. Martínez, M. North and A. Otero, *Catal. Sci. Technol.*, 2014, 4, 1674; (b) J. Martínez, J. A. Castro-Osma, A. Earlam, C. Alonso-Moreno, A. Otero, A. Lara-Sánchez, M. North and A. Rodríguez-Diéguez, *Chem. Eur. J.*, 2015, 21, 9850; (c) J. Martínez, J. A. Castro-Osma, C. Alonso-Moreno, A. Rodríguez-Diéguez, M. North, A. Otero and A. Lara-Sánchez, *ChemSusChem*, 2017, 10, 1175; (d) D. O. Meléndez, A. Lara-Sánchez, J. Martínez, X. Wu, A. Otero, J. A. Castro-Osma, M. North and R. S. Rojas, *ChemCatChem*, 2018, 10, 2271; (e) F. de la Cruz-Martínez, J. Martínez, M. A. Gaona, J. Fernández-Baeza, L. F. Sánchez-Barba, A. M. Rodríguez, J. A. Castro-Osma, A. Otero and A. Lara-Sánchez, *ACS Sustain. Chem. Eng.*, 2018, 6, 5322.