Ru(O₂CCF₃)₂(PPh₃)₂ and ruthenium phosphine complexes bearing fluoroacetate ligands: synthesis, characterization and catalytic activity

Daniela A. Hey^{a,#}, Pauline J. Fischer^{a,#}, Walter Baratta^{b,*}, Fritz E. Kühn^{a,*}

[#]D.A.H. and P.J.F. contributed equally to this work.

^a Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching bei München, Germany

^b Dipartimento di Scienze AgroAlimentari, Ambientali e Animali (DI4A), Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy

Supporting Information

Table of contents

1. Crystallographic data	1
1.1 Crystallographic data for complex 1a	1
1.2 Crystallographic data for complex 1b.	
1.3 Crystallographic data for complex 2.	5
1.4 Crystallographic data for complex 3	7
1.5 Crystallographic data for complex 4	
1.6 Crystallographic data for complex 6.	11
1.7 Crystallographic data for complex 7	13
1.8 Crystallographic data for complex 8.	15
2. NMR spectra	17
2.1 NMR spectra of complex 1.	17
2.2 NMR spectra of complex 2.	19
2.3 NMR spectra of complex 3.	22
2.4 NMR spectra of complex 4.	25
2.5 NMR spectra of complex 7.	
2.6 NMR spectra of complex 8.	
3. Catalytic transfer hydrogenation of ketones	32
3.1 Transfer hydrogenation of acetophenone	32
3.2 Transfer hydrogenation of benzophenone	34
3.3 Transfer hydrogenation of cyclohexanone	35

1. Crystallographic data

1.1 Crystallographic data for complex 1a.

Figure S1.1. ORTEP style drawing of **1a** with ellipsoids at 50% probability level. All hydrogen atoms were omitted for clarity, hydrogens on O1 could be located in the difference Fourier maps.

A clear yellow-brown fragment-like specimen of C₄₀H₃₁F₆O_{4.50}P₂Ru, approximate dimensions 0.105 mm x 0.211 mm x 0.345 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 Venture Duo IMS system equipped with a Helios optic monochromator and a Mo IMS microsource ($\lambda = 0.71073$ Å).

A total of 4799 frames were collected. The total exposure time was 12.88 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 281355 reflections to a maximum θ angle of 25.02° (0.84 Å resolution), of which 7083 were independent (average redundancy 39.723, completeness = 99.9%, R_{int} = 6.86%, R_{sig} = 1.67%) and 6223 (87.86%) were greater than 2 σ (F²). The final cell constants of <u>a</u> = 11.9960(14) Å, <u>b</u> = 30.198(4) Å, <u>c</u> = 44.214(5) Å, volume = 16017.(3) Å³, are based upon the refinement of the XYZ-centroids of 9475 reflections above 20 σ (I) with 4.566° < 2 θ < 51.34°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.913. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8360 and 0.9460.

The final anisotropic full-matrix least-squares refinement on F² with 523 variables converged at R1 = 6.74%, for the observed data and wR2 = 17.08% for all data. The goodness-of-fit was 1.068. The largest peak in the final difference electron density synthesis was 6.577 e⁻/Å³ and the largest hole was -1.270 e⁻/Å³ with an RMS deviation of 0.138 e⁻/Å³. On the basis of the final model, the calculated density was 1.428 g/cm³ and F(000), 6960 e⁻.

Table 1.1.1. Sample and crystal data for **1a**.

CCDC number	1892673		
Chemical formula	$C_{40}H_{31}F_6O_{4.50}P_2Ru$		
Formula weight	860.66		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.105 x 0.211 x 0.345 mm		
Crystal habit	clear yellow-brown fragment		
Crystal system	orthorhombic		
Space group	lbca		
Unit cell dimensions	a = 11.9960(14) Å	$\alpha = 90^{\circ}$	
	b = 30.198(4) Å	$\beta = 90^{\circ}$	
	c = 44.214(5) Å	$\gamma = 90^{\circ}$	
Volume	16017.(3) Å ³		
Z	16		
Density (calculated)	1.428 g/cm ³		
Absorption coefficient	0.539 mm ⁻¹		
F(000)	6960		

Table 1.1.2. Data collection and structure refinement for **1a**.

Diffractometer	Bruker D8 Venture Duo IMS	
Radiation source	IMS microsource, Mo	
Theta range for data collection	2.05 to 25.02°	
Index ranges	-14<=h<=14, -35<=k<=35, -52<=l<=52	
Reflections collected	281355	
Independent reflections	7083 [R(int) = 0.0686]	
Coverage of independent reflections	99.9%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.9460 and 0.8360	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)	
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$	
Data / restraints / parameters	7083 / 128 / 523	
Goodness-of-fit on F ²	1.068	
Δ/σ_{max}	0.001	
Final R indices	6223 data; R1 = 0.0674, wR2 = 0.1604 I>2σ(I)	
	all data $R1 = 0.0765$, $wR2 = 0.1708$	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0677P) ² +286.9807P] where P=(F_o^2 +2 F_c^2)/3	
Largest diff. peak and hole	6.577 and -1.270 eÅ ⁻³	
R.M.S. deviation from mean	0.138 eÅ ⁻³	

1.2 Crystallographic data for complex 1b.

Figure S1.2. ORTEP style drawing of **1b** with ellipsoids at 50% probability level. Hydrogen atoms were omitted for clarity.

A clear yellow-brown fragment-like specimen of $C_{84}H_{60}F_{18}O_{12}P_4Ru_2TI_2$, approximate dimensions 0.133 mm x 0.149 mm x 0.192 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 Venture system equipped with a Helios optic monochromator and a Mo TXS rotating anode ($\lambda = 0.71073$ Å).

A total of 2140 frames were collected. The total exposure time was 2.77 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 139817 reflections to a maximum θ angle of 25.68° (0.82 Å resolution), of which 8182 were independent (average redundancy 17.088, completeness = 99.9%, R_{int} = 5.10%, R_{sig} = 1.71%) and 7387 (90.28%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 10.7843(9) Å, <u>b</u> = 16.6625(13) Å, <u>c</u> = 24.1130(19) Å, β = 96.281(3)°, volume = 4306.9(6) Å³, are based upon the refinement of the XYZ-centroids of 288 reflections above 20 $\sigma(I)$ with 4.403° < 2 θ < 47.02°. The ratio of minimum to maximum apparent transmission was 0.894. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6663 and 0.7453.

The structure was solved and refined using the Bruker SHELXTL Software Package in conjunction with SHELXLE, using the space group P 1 21/n 1, with Z = 2 for the formula unit, $C_{84}H_{60}F_{18}O_{12}P_4Ru_2Tl_2$. The final anisotropic full-matrix least-squares refinement on F² with 606 variables converged at R1 = 1.97%, for the observed data and wR2 = 4.69% for all data. The goodness-of-fit was 1.059. The largest peak in the final difference electron density synthesis was 1.263 e⁻/Å³ and the largest hole was -0.822 e⁻/Å³ with an RMS deviation of 0.075 e⁻/Å³. On the basis of the final model, the calculated density was 1.803 g/cm³ and F(000), 2264 e⁻.

Table 1.2.1. Sample and crystal data for **1b**.

CCDC number	1892671	
Chemical formula	$C_{84}H_{60}F_{18}O_{12}P_4Ru_2Tl_2$	
Formula weight	2338.10	
Wavelength	0.71073 Å	
Crystal size	0.133 x 0.149 x 0.192 mm	
Crystal habit	clear yellow-brown fragment	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 10.7843(9) Å	$\alpha = 90^{\circ}$
	$b = 16.6625(13) \text{ Å} \qquad \beta = 96.281(3)^{\circ}$	
	c = 24.1130(19) Å	γ = 90°
Volume	4306.9(6) Å ³	
Z	2	
Density (calculated)	1.803 g/cm ³	
Absorption coefficient	4.246 mm ⁻¹	
F(000)	2264	

Table 1.2.2. Data collection and structure refinement for **1b**.

Diffractometer	Bruker D8 Venture	
Radiation source	TXS rotating anode, Mo	
Theta range for data collection	2.26 to 25.68°	
Index ranges	-13<=h<=13, -20<=k<=20, -29<=l<=29	
Reflections collected	139817	
Independent reflections	8182 [R(int) = 0.0510]	
Coverage of independent reflections	99.9%	
Max. and min. transmission	0.7453 and 0.6663	
Structure solution technique	direct methods	
Structure solution program	SHELXT (Sheldrick, 2015)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL2014 (Sheldrick, 2014), SHELXLE (Huebschle, 2011)	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	8182 / 66 / 606	
Goodness-of-fit on F ²	1.059	
Δ / σ_{max}	0.009	
Final R indices	7387 data; R1 = 0.0197, wR2 = 0.0458 I>2σ(I)	
	all data R1 = 0.0240, wR2 = 0.0469	
Weighting scheme	W=1/[$\Sigma^{2}(F_{o}^{2})$ +(0.0232P) ² +4.2704P] where P=(F_{o}^{2} +2 F_{o}^{2})/3	
Largest diff. peak and hole	1.263 and -0.822 eÅ ⁻³	
R.M.S. deviation from mean	0.075 eÅ ⁻³	

1.3 Crystallographic data for complex 2.

Figure S1.3. ORTEP style drawing of dinuclear complex **2** with ellipsoids at 50% probability level. All hydrogen atoms were omitted for clarity, hydrogens on O1 could be located in the difference Fourier maps.

A clear intense orange fragment-like specimen of $C_{79}H_{64}Cl_3F_9O_7P_4Ru_2$, approximate dimensions 0.054 mm x 0.139 mm x 0.287 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 Kappa Apex II system equipped with a Triumph monochromator monochromator and a Mo fine-focus sealed tube ($\lambda = 0.71073$ Å).

A total of 2886 frames were collected. The total exposure time was 8.02 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 77986 reflections to a maximum θ angle of 25.45° (0.83 Å resolution), of which 14180 were independent (average redundancy 5.500, completeness = 98.7%, R_{int} = 5.69%, R_{sig} = 4.42%) and 11518 (81.23%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 13.819(3) Å, <u>b</u> = 39.501(10) Å, <u>c</u> = 14.479(4) Å, β = 100.849(14)°, volume = 7762.(3) Å³, are based upon the refinement of the XYZ-centroids of 115 reflections above 20 $\sigma(I)$ with 11.51° < 2 θ < 46.70°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.929. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8360 and 0.9660.

The final anisotropic full-matrix least-squares refinement on F² with 1057 variables converged at R1 = 3.24%, for the observed data and wR2 = 7.30% for all data. The goodness-of-fit was 1.016. The largest peak in the final difference electron density synthesis was 0.517 e⁻/Å³ and the largest hole was -0.817 e⁻/Å³ with an RMS deviation of 0.070 e⁻/Å³. On the basis of the final model, the calculated density was 1.479 g/cm³ and F(000), 3496 e⁻.

Table 1.3.1. Sample and crystal data for 2.

CCDC number	1892670	
Chemical formula	C79H64Cl3F9O7P4Ru2	
Formula weight	1728.67	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.054 x 0.139 x 0.287 mm	
Crystal habit	clear intense orange fragment	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 13.819(3) Å	$\alpha = 90^{\circ}$
	b = 39.501(10) Å	$\beta = 100.849(14)^{\circ}$
	c = 14.479(4) Å	$\gamma = 90^{\circ}$
Volume	7762.(3) Å ³	
Z	4	
Density (calculated)	1.479 g/cm ³	
Absorption coefficient	0.649 mm ⁻¹	
F(000)	3496	

Table 1.3.2. Data collection and structure refinement for **2**.

Diffractometer	Bruker D8 Kappa Apex II	
Radiation source	fine-focus sealed tube, Mo	
Theta range for data collection	1.59 to 25.45°	
Index ranges	-16<=h<=10, -47<=k<=47, -16<=l<=17	
Reflections collected	77986	
Independent reflections	14180 [R(int) = 0.0569]	
Coverage of independent reflections	98.7%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.9660 and 0.8360	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)	
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$	
Data / restraints / parameters	14180 / 259 / 1057	
Goodness-of-fit on F ²	1.016	
Δ/σ_{max}	0.002	
	11518	
Final R indices	data; R1 = 0.0324, wR2 = 0.0683 I>2ơ(I)	
	all data R1 = 0.0466, wR2 = 0.0730	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0276P) ² +6.4943P] where P=(F_o^2 +2 F_c^2)/3	
Largest diff. peak and hole	0.517 and -0.817 eÅ ⁻³	
R.M.S. deviation from mean	0.070 eÅ ⁻³	

1.4 Crystallographic data for complex 3.

Figure S1.4. ORTEP style drawing of dinuclear complex **3** with ellipsoids at 50% probability level. All hydrogen atoms were omitted for clarity, hydrogens on O1 could be located in the difference Fourier maps.

A specimen of C₇₉H₆₇Cl₃F₆O₇P₄Ru₂, approximate dimensions 0.088 mm x 0.172 mm x 0.649 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 Venture system equipped with a Helios optic monochromator and a Mo TXS rotating anode ($\lambda = 0.71073$ Å).

A total of 2525 frames were collected. The total exposure time was 3.31 hours. The integration of the data using a monoclinic unit cell yielded a total of 129404 reflections to a maximum θ angle of 25.03° (0.84 Å resolution), of which 13519 were independent (average redundancy 9.572, completeness = 99.9%, R_{int} = 12.91%, R_{sig} = 6.41%) and 10421 (77.08%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 13.639(7) Å, <u>b</u> = 39.50(2) Å, <u>c</u> = 14.472(8) Å, β = 100.941(16)°, volume = 7655.(7) Å³, are based upon the refinement of the XYZ-centroids of reflections above 20 $\sigma(I)$. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6780 and 0.9450.

The final anisotropic full-matrix least-squares refinement on F² with 1030 variables converged at R1 = 4.58%, for the observed data and wR2 = 11.01% for all data. The goodness-of-fit was 1.008. The largest peak in the final difference electron density synthesis was 1.034 e⁻/Å³ and the largest hole was -0.630 e⁻/Å³ with an RMS deviation of 0.089 e⁻/Å³. On the basis of the final model, the calculated density was 1.453 g/cm³ and F(000), 3400 e⁻.

Table 1.4.1. Sample and crystal data for **3**.

CCDC number	1892675		
Chemical formula	C79H67Cl3F6O7P4Ru2		
Formula weight	1674.69		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.088 x 0.172 x 0.649 mm		
Crystal system	monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 13.639(7) Å	$\alpha = 90^{\circ}$	
	b = 39.50(2) Å	$\beta=100.941(16)^\circ$	
	c = 14.472(8) Å	$\gamma = 90^{\circ}$	
Volume	7655.(7) Å ³		
Z	4		
Density (calculated)	1.453 g/cm ³		
Absorption coefficient	0.650 mm ⁻¹		
F(000)	3400		

Table 1.4.2. Data collection and structure refinement for 3.

Diffractometer	Bruker D8 Venture		
Radiation source	TXS rotating anode, Mo		
Theta range for data collection	2.17 to 25.03°		
Index ranges	-13<=h<=16, -	47<=k<=47, -17<=l<=17	
Reflections collected	129404		
Independent reflections	13519 [R(int) = 0.1291]		
Max. and min. transmission	0.9450 and 0.6780		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2016/6 (Sheldrick, 2016)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	13519 / 424 / 1030		
Goodness-of-fit on F ²	1.008		
Δ/σ_{max}	0.002		
Final R indices	10421 data; I>2σ(I)	R1 = 0.0458, wR2 = 0.1006	
	all data	R1 = 0.0687, wR2 = 0.1101	
Weighting scheme	w=1/[σ²(F₀²)+(0.0402P)²+15.8467P] where P=(F₀²+2F₀²)/3		
Largest diff. peak and hole	1.034 and -0.630 eÅ ⁻³		
R.M.S. deviation from mean	0.089 eÅ ⁻³		

1.5 Crystallographic data for complex 4.

Figure S1.5. ORTEP style drawing of dinuclear complex **4** with ellipsoids at 50% probability level. All hydrogen atoms were omitted for clarity, hydrogens on O1 could be located in the difference Fourier maps.

A clear yellow fragment-like specimen of $C_{80}H_{72}CI_5F_3O_7P_4Ru_2$, approximate dimensions 0.103 mm x 0.172 mm x 0.272 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 Kappa Apex II system equipped with a Triumph monochromator monochromator and a Mo fine-focus sealed tube ($\lambda = 0.71073$ Å).

A total of 4757 frames were collected. The total exposure time was 13.21 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 76154 reflections to a maximum θ angle of 25.03° (0.84 Å resolution), of which 13286 were independent (average redundancy 5.732, completeness = 100.0%, R_{int} = 9.67%, R_{sig} = 7.75%) and 9354 (70.40%) were greater than 2 σ (F²). The final cell constants of <u>a</u> = 13.584(3) Å, <u>b</u> = 39.646(9) Å, <u>c</u> = 14.247(3) Å, β = 100.978(13)°, volume = 7532.(3) Å³, are based upon the refinement of the XYZ-centroids of 9587 reflections above 20 σ (I) with 4.604° < 2 θ < 50.74°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.862. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8270 and 0.9290.

The final anisotropic full-matrix least-squares refinement on F² with 965 variables converged at R1 = 4.86%, for the observed data and wR2 = 12.49% for all data. The goodness-of-fit was 1.025. The largest peak in the final difference electron density synthesis was 1.444 e⁻/Å³ and the largest hole was -1.629 e⁻/Å³ with an RMS deviation of 0.113 e⁻/Å³. On the basis of the final model, the calculated density was 1.504 g/cm³ and F(000), 3472 e⁻.

Table 1.5.1. Sample and crystal data for 4.

CCDC number	1892672		
Chemical formula	C ₈₀ H ₇₂ Cl ₅ F ₃ O ₇ P ₄ Ru ₂		
Formula weight	1705.64		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.103 x 0.172 x 0.272 mm		
Crystal habit	clear yellow fragment		
Crystal system	monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 13.584(3) Å	$\alpha = 90^{\circ}$	
	b = 39.646(9) Å	$\beta=100.978(13)^\circ$	
	c = 14.247(3) Å	γ = 90°	
Volume	7532.(3) Å ³		
Z	4		
Density (calculated)	1.504 g/cm ³		
Absorption coefficient	0.725 mm ⁻¹		
F(000)	3472		

Table 1.5.2. Data collection and structure refinement for 4.

Diffractometer	Bruker D8 Kappa Apex II	
Radiation source	fine-focus sealed tube, Mo	
Theta range for data collection	1.03 to 25.03°	
Index ranges	-16<=h<=16, -47<=k<=46, -16<=l<=16	
Reflections collected	76154	
Independent reflections	13286 [R(int) = 0.0967]	
Coverage of independent reflections	100.0%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.9290 and 0.8270	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2016/6 (Sheldrick, 2016)	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	13286 / 104 / 965	
Goodness-of-fit on F ²	1.025	
Δ/σ_{max}	0.001	
	9354	
Final R indices	data; R1 = 0.0486, wR2 = 0.1102 I>2σ(I)	
	all data R1 = 0.0832, wR2 = 0.1249	
Weighting scheme	w=1/[$\sigma^2(F_0^2)$ +(0.0569P) ² +10.9304P] where P=(F_0^2 +2 F_c^2)/3	
Largest diff. peak and hole	1.444 and -1.629 eÅ ⁻³	
R.M.S. deviation from mean	0.113 eÅ ⁻³	

1.6 Crystallographic data for complex 6.

Figure S1.6. ORTEP style drawing of **6** with ellipsoids at 50% probability level. Hydrogen atoms were omitted for clarity.

A clear yellow fragment-like specimen of $C_{92}H_{84}F_{12}O_8P_6Ru_2$, approximate dimensions 0.039 mm x 0.092 mm x 0.187 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 Venture Duo IMS system equipped with a Helios optic monochromator and a Mo IMS microsource ($\lambda = 0.71073$ Å).

A total of 2009 frames were collected. The total exposure time was 15.39 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 61100 reflections to a maximum θ angle of 25.03° (0.84 Å resolution), of which 7762 were independent (average redundancy 7.872, completeness = 100.0%, R_{int} = 3.87%, R_{sig} = 1.96%) and 7147 (92.08%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 10.8399(6) Å, <u>b</u> = 11.0183(6) Å, <u>c</u> = 21.0415(12) Å, α = 95.630(2)°, β = 101.051(2)°, γ = 114.300(2)°, volume = 2203.6(2) Å³, are based upon the refinement of the XYZ-centroids of 9388 reflections above 20 $\sigma(I)$ with 4.445° < 2 θ < 51.33°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.953. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9070 and 0.9800.

The structure was solved and refined using the Bruker SHELXTL Software Package in conjunction with SHELXLE, using the space group P -1, with Z = 1 for the formula unit, $C_{92}H_{84}F_{12}O_8P_6Ru_2$. The final anisotropic full-matrix least-squares refinement on F² with 542 variables converged at R1 = 3.37%, for the observed data and wR2 = 6.85% for all data. The goodness-of-fit was 1.069. The largest peak in the final difference electron density synthesis was 1.211 e⁻/Å³ and the largest hole was -1.314 e⁻/Å³ with an RMS deviation of 0.071 e⁻/Å³. On the basis of the final model, the calculated density was 1.457 g/cm³ and F(000), 986 e⁻.

Table 1.6.1. Sample and crystal data for 6.

1892669	
C92H84F12O8P6Ru2	
1933.55	
100(2) K	
0.71073 Å	
0.039 x 0.092 x 0.187 mm	
clear yellow fragment	
triclinic	
P -1	
a = 10.8399(6) Å	$\alpha = 95.630(2)^{\circ}$
b = 11.0183(6) Å	$\beta = 101.051(2)^{\circ}$
c = 21.0415(12) Å	γ = 114.300(2)°
2203.6(2) Å ³	
1	
1.457 g/cm ³	
0.532 mm ⁻¹	
986	
	1892669 $C_{92}H_{84}F_{12}O_8P_6Ru_2$ 1933.55 100(2) K 0.71073 Å 0.039 x 0.092 x 0.187 m clear yellow fragment triclinic P -1 a = 10.8399(6) Å b = 11.0183(6) Å c = 21.0415(12) Å 2203.6(2) Å ³ 1 1.457 g/cm ³ 0.532 mm ⁻¹ 986

Table 1.6.2. Data collection and structure refinement for 6.

Diffractometer	Bruker D8 Venture Duo IMS
Radiation source	IMS microsource, Mo
Theta range for data collection	2.01 to 25.03°
Index ranges	-12<=h<=12, -13<=k<=12, -25<=l<=25
Reflections collected	61100
Independent reflections	7762 [R(int) = 0.0387]
Coverage of independent reflections	100.0%
Absorption correction	Multi-Scan
Max. and min. transmission	0.9800 and 0.9070
Structure solution technique	direct methods
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2016/6 (Sheldrick, 2016)
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$
Data / restraints / parameters	7762 / 66 / 542
Goodness-of-fit on F ²	1.069
Δ/σ_{max}	0.001
	7147
Final R indices	data; R1 = 0.0337, wR2 = 0.0670 I>2σ(I)
	all data R1 = 0.0373, wR2 = 0.0685
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0060P) ² +5.8589P] where P=(F_o^2 +2 F_c^2)/3
Largest diff. peak and hole	1.211 and -1.314 eÅ ⁻³
R.M.S. deviation from mean	0.071 eÅ ⁻³

1.7 Crystallographic data for complex 7.

Figure S1.7. ORTEP style drawing of **7** with ellipsoids at 50% probability level. All hydrogen atoms were omitted for clarity, hydrogens on O5 and O6 could be located in the difference Fourier maps.

A yellow fragment-like specimen of $C_{34}H_{34}F_6O_6P_2Ru$, approximate dimensions 0.180 mm x 0.310 mm x 0.430 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 Venture Duo IMS system equipped with a Helios optic monochromator and a Mo IMS microsource ($\lambda = 0.71073$ Å).

A total of 947 frames were collected. The total exposure time was 2.18 hours. The integration of the data using an orthorhombic unit cell yielded a total of 40954 reflections to a maximum θ angle of 25.02° (0.84 Å resolution), of which 5799 were independent (average redundancy 7.062, completeness = 100.0%, R_{int} = 10.98%, R_{sig} = 6.52%) and 4938 (85.15%) were greater than 2 σ (F²). The final cell constants of <u>a</u> = 18.484(6) Å, <u>b</u> = 10.708(3) Å, <u>c</u> = 17.311(6) Å, volume = 3426.3(18) Å³, are based upon the refinement of the XYZ-centroids of reflections above 20 σ (I). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7740 and 0.8950.

The structure was solved and refined using the Bruker SHELXTL Software Package in conjunction with SHELXLE, using the space group P n a 21, with Z = 4 for the formula unit, $C_{34}H_{32}F_6O_6P_2Ru$. The final anisotropic full-matrix least-squares refinement on F² with 498 variables converged at R1 = 4.29%, for the observed data and wR2 = 11.27% for all data. The goodness-of-fit was 1.076. The largest peak in the final difference electron density synthesis was 0.739 e⁻/Å³ and the largest hole was -0.732 e⁻/Å³ with an RMS deviation of 0.091 e⁻/Å³. On the basis of the final model, the calculated density was 1.577 g/cm³ and F(000), 1648 e⁻.

Table 1.7.1. Sample and crystal data for 7.

CCDC number	1892668	
Chemical formula	C34H34F6O6P2Ru	
Formula weight	813.60	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.180 x 0.310 x 0.430 mm	
Crystal habit	yellow fragment	
Crystal system	orthorhombic	
Space group	P n a 21	
Unit cell dimensions	a = 18.484(6) Å	$\alpha = 90^{\circ}$
	b = 10.708(3) Å	$\beta = 90^{\circ}$
	c = 17.311(6) Å	$\gamma = 90^{\circ}$
Volume	3426.3(18) Å ³	
Z	4	
Density (calculated)	1.577 g/cm ³	
Absorption coefficient	0.628 mm ⁻¹	
F(000)	1648	

Table 1.7.2. Data collection and structure refinement for 7.

Diffractometer	Bruker D8 Venture Duo IMS		
Radiation source	IMS microsource, Mo		
Theta range for data collection	2.20 to 25.02°		
Index ranges	-22<=h<=22, -12<=k<=12, -20<=l<=18		
Reflections collected	40954		
Independent reflections	5799 [R(int) = 0.1098]		
Max. and min. transmission	0.8950 and 0.7740		
Structure solution technique	direct methods		
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$		
Data / restraints / parameters	5799 / 79 / 498		
Goodness-of-fit on F ²	1.076		
Final R indices	4938 data; I>2σ(I)	R1 = 0.0429, wR2 = 0.0977	
	all data	R1 = 0.0595, wR2 = 0.1127	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0295P) ² +7.2904P] where P=(F_o^2+2F_c^2)/3		
Absolute structure parameter	0.0(0)		
Largest diff. peak and hole	0.739 and -0.732 eÅ ⁻³		
R.M.S. deviation from mean	0.091 eÅ ⁻³		

1.8 Crystallographic data for complex 8.

Figure S1.8. ORTEP style drawing of **8** with ellipsoids at 50% probability level. All hydrogen atoms were omitted for clarity, hydrogens on N1 and N2 could be located in the difference Fourier maps.

A clear yellow fragment-like specimen of $C_{34}H_{36}F_6N_2O_4P_2Ru$, approximate dimensions 0.065 mm x 0.074 mm x 0.227 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 Venture system equipped with a Helios optic monochromator and a Mo TXS rotating anode ($\lambda = 0.71073$ Å).

A total of 2600 frames were collected. The total exposure time was 6.77 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 68362 reflections to a maximum θ angle of 25.03° (0.84 Å resolution), of which 6045 were independent (average redundancy 11.309, completeness = 99.9%, R_{int} = 3.16%, R_{sig} = 1.32%) and 5566 (92.08%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 10.6493(8) Å, <u>b</u> = 10.9413(8) Å, <u>c</u> = 17.1095(13) Å, α = 72.020(3)°, β = 77.186(3)°, γ = 65.201(3)°, volume = 1711.5(2) Å³, are based upon the refinement of the XYZ-centroids of 9866 reflections above 20 σ (I) with 4.719° < 2 θ < 51.48°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.960. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8710 and 0.9600.

The structure was solved and refined using the Bruker SHELXTL Software Package in conjunction with SHELXLE, using the space group P -1, with Z = 2 for the formula unit, $C_{34}H_{36}F_6N_2O_4P_2Ru$. The final anisotropic full-matrix least-squares refinement on F² with 511 variables converged at R1 = 2.37%, for the observed data and wR2 = 5.67% for all data. The goodness-of-fit was 1.053. The largest peak in the final difference electron density synthesis was 0.611 e⁻/Å³ and the largest hole was -0.656 e⁻/Å³ with an RMS deviation of 0.060 e⁻/Å³. On the basis of the final model, the calculated density was 1.579 g/cm³ and F(000), 828 e⁻.

Table 1.8.1. Sample and crystal data for 8.

1892674		
$C_{34}H_{36}F_6N_2O_4P_2Ru$		
813.66		
100(2) K		
0.71073 Å		
0.065 x 0.074 x 0.227 mm		
clear yellow fragment		
triclinic		
P -1		
a = 10.6493(8) Å	$\alpha = 72.020(3)^{\circ}$	
b = 10.9413(8) Å	$\beta = 77.186(3)^{\circ}$	
c = 17.1095(13) Å	γ = 65.201(3)°	
1711.5(2) ų		
2		
1.579 g/cm ³		
0.625 mm ⁻¹		
828		
	1892674 $C_{34}H_{36}F_{6}N_{2}O_{4}P_{2}Ru$ 813.66 $100(2) K$ $0.71073 Å$ $0.065 x 0.074 x 0.227 m$ clear yellow fragment triclinic P -1 a = 10.6493(8) Å b = 10.9413(8) Å c = 17.1095(13) Å 1711.5(2) Å^{3} 2 $1.579 g/cm^{3}$ $0.625 mm^{-1}$ 828	

Table 1.8.2. Data collection and structure refinement for 8.

Diffractometer	Bruker D8 Venture
Radiation source	TXS rotating anode, Mo
Theta range for data collection	2.35 to 25.03°
Index ranges	-12<=h<=12, -13<=k<=13, -20<=l<=20
Reflections collected	68362
Independent reflections	6045 [R(int) = 0.0316]
Coverage of independent reflections	99.9%
Absorption correction	Multi-Scan
Max. and min. transmission	0.9600 and 0.8710
Structure solution technique	direct methods
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$
Data / restraints / parameters	6045 / 118 / 511
Goodness-of-fit on F ²	1.053
Δ / σ_{max}	0.009
Final R indices	5566 data; R1 = 0.0237, wR2 = 0.0548 I>2σ(I)
	all data $R1 = 0.0270$, $wR2 = 0.0567$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0201P) ² +2.3716P] where P=(F_o^2 +2 F_o^2)/3
Largest diff. peak and hole	0.611 and -0.656 eÅ ⁻³
R.M.S. deviation from mean	0.060 eÅ ⁻³

2. NMR spectra

Figure S2.1.3.¹⁹F $\{^{1}H\}$ NMR spectrum of **1** in CD₂Cl₂.

Figure S2.1.4.¹³C{¹H} NMR spectrum of 1 in CD₂Cl₂.

Figure S2.2.2.³¹P{¹H} VT-NMR spectra of **2** in CD₂Cl₂. (1) T = -80°C; (2) T = -60°C; (3) T = -40°C; (4) T = -20°C; (5) T = 0°C; (6) T = 20°C.

Figure S2.2.6.¹³C{¹H} DEPT NMR spectrum of 2 in CD₂Cl₂.

2.3 NMR spectra of complex 3.

Figure S2.3.2.¹H NMR spectrum of **3** in CDCl₃.

Figure S2.3.3.¹⁹F{¹H} NMR spectrum of **3** in CDCl₃.

Figure S2.3.4.¹⁹F NMR spectrum of **3** in CDCl₃.

Figure S2.3.5.¹³C{¹H} NMR spectrum of **3** in CDCl₃.

Figure S2.4.1.³¹P{¹H} NMR spectrum of **4** in CDCl₃.

Figure S2.4.2.³¹P{¹H} VT-NMR spectra of **4** in CD₂Cl₂. (1) T = -40°C; (2) T = -20°C; (3) T = 0°C; (4) T = 10°C.

Figure S2.4.3.¹H NMR spectrum of **4** in CDCl₃.

Figure S2.4.4.¹⁹F ^{1}H NMR spectrum of **4** in CD₂Cl₂.

Figure S2.4.5.¹⁹F NMR spectrum of **4** in CD₂Cl₂.

Figure S2.4.6.¹³C{¹H} DEPT NMR spectrum of **4** in CDCl₃.

2.5 NMR spectra of complex 7.

Figure S2.5.2.¹H NMR spectrum of **7** in CD₂Cl₂.

Figure S2.5.3.¹⁹F{¹H} NMR spectrum of **7** in CD₂Cl₂.

Figure S2.5.4.13C{1H} NMR spectrum of 7 in CDCl₃.

2.6 NMR spectra of complex 8.

Figure S2.6.1.³¹P{¹H} NMR spectrum of 8 in CD₂Cl₂.

Figure S2.6.2.¹H NMR spectrum of **8** in CD₂Cl₂.

Figure S2.6.3.¹⁹F{¹H} NMR spectrum of **8** in CD₂Cl₂.

Figure S2.6.4.¹³C{¹H} NMR spectrum of **8** in CD₂Cl₂.

3. Catalytic transfer hydrogenation of ketones

3.1 Transfer hydrogenation of acetophenone

Figure S3.1.1. Transfer hydrogenation of acetophenone in PrOH with 2 mol% NaO/Pr without catalyst.

Figure S3.1.2. Transfer hydrogenation of acetophenone in PrOH with 2 mol% NaOPr and 0.1 mol% 1.

Figure S3.1.3. Transfer hydrogenation of acetophenone in PrOH with 2 mol% NaOPr and 0.1 mol% 7.

Figure S3.1.4. Transfer hydrogenation of acetophenone in PrOH with 2 mol% NaOPr and 0.1 mol% 8.

3.2 Transfer hydrogenation of benzophenone

Figure S3.2.1. Transfer hydrogenation of benzophenone in PrOH with 2 mol% NaOPr and 0.1 mol% 7.

Figure S3.2.2. Transfer hydrogenation of benzophenone in PrOH with 2 mol% NaOPr and 0.1 mol% 8.

3.3 Transfer hydrogenation of cyclohexanone

Figure S3.3.1. Transfer hydrogenation of cyclohexanone in 'PrOH with 2 mol% NaO'Pr and 0.03 mol% **7**.

Figure S3.3.2. Transfer hydrogenation of cyclohexanone in 'PrOH with 2 mol% NaO'Pr and 0.03 mol% **8**.