Electronic Supplementary Information

Strapping a benzaldehyde-appended 2,2'-bis-dipyrrin Zn(II) doublestranded helicate using imine bond formation

Fan Zhang, Audrey Fluck, Stéphane A. Baudron* and Mir Wais Hosseini*

Laboratoire de Tectonique Moléculaire, UMR UdS-CNRS 7140, icFRC
Institut Le Bel, Université de Strasbourg
4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg cedex, France
Fax: (+) 33368851325
E-mail: hosseini@unistra.fr ; sbaudron@unistra.fr

Synthesis

$$
\mathrm{Zn}(\mathrm{OAc})_{2}
$$

4

3

$\mathrm{NaBH}_{3} \mathrm{CN}$

2

5-(4-formylphenyl)dipyrrin was synthesized as described. ${ }^{1}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a Bruker AV500 (500 MHz) or AV400 (400 MHz) with the deuterated solvent as the internal reference. NMR chemical shifts and J values are given in parts per million (ppm) and in Hertz, respectively. Mass spectrometry was performed by the Service commun d'analyse (University of Strasbourg).

Complex 2: To a $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ solution of 5-(4-formylphenyl)dipyrrin (0.83 g ; 3.34 mmol), a $\mathrm{MeOH}(50 \mathrm{~mL})$ solution of $\mathrm{Ni}(\mathrm{OAc})_{2} .4 \mathrm{H}_{2} \mathrm{O}(0.42 \mathrm{~g} ; 1.67 \mathrm{mmol})$ was added. The mixture was stirred at room temperature overnight. It was then evaporated under reduced pressure and the residue was washed with MeOH affording complex 2 as a dark red solid $(0.76 \mathrm{~g}, 82 \%) . \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 10.96 ($\mathrm{s}, 4 \mathrm{H}$, pyrroleH), $10.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}$), $8.30(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH), 7.91 (d, 4H, $J=7.8 \mathrm{~Hz}, \mathrm{PhH}$), 7.52 (d, 4H, $J=7.9 \mathrm{~Hz}, \mathrm{PhH}$), 6.67 (s, $J=3.8 \mathrm{~Hz}$ 4 H , pyrroleH). $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 191.8, 175.7, 149.2, 142.8, 141.6, 139.4, 136.9, 136.6, 131.2, 128.8. Single crystals were obtained by n-pentane vapor diffusion into a THF solution of the complex.

Fig. ESI1 ${ }^{1} \mathrm{H}$-NMR spectrum of complex $\mathbf{2}$ in CDCl_{3}.

Fig. ESI2 ${ }^{13} \mathrm{C}-$ NMR spectrum of complex $\mathbf{2}$ in CDCl_{3}.

Complex 3: A toluene (150 mL) solution of $\operatorname{DDQ}(0.34 \mathrm{~g} ; 1.49 \mathrm{mmol})$ was added dropwise to a toluene (200 mL) solution of complex $2(0.75 \mathrm{~g} ; 1.36 \mathrm{mmol})$. The color of the mixture turned from red to brown, upon heating at reflux for 24 hours. After evaporation under reduced pressure, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Cyclohexane}\right.$: 9/1) affording the desired compound 3 as a red solid ($0.6 \mathrm{~g}, 80 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 10.14 (s, 2H, CHO), 8.00 (d, 4H, $J=8.2 \mathrm{~Hz}, \mathrm{PhH}$), 7.73 (d, 4H, $J=8.2 \mathrm{~Hz}, \mathrm{PhH}$), 6.73 (d, $2 \mathrm{H}, J=4.7 \mathrm{~Hz}$, pyrroleH), $6.68(\mathrm{~d}, 2 \mathrm{H}, J=4.4 \mathrm{~Hz}$, pyrroleH), $6.65(\mathrm{~d}, 2 \mathrm{H}, J=4.4 \mathrm{~Hz}$, pyrroleH), $6.46\left(\mathrm{~d}, 2 \mathrm{H}, J=4.7 \mathrm{~Hz}\right.$, pyrroleH), $5.94(\mathrm{~s}, 2 \mathrm{H}$, pyrroleH $) . \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $191.9,161.9,154.1,142.9,141.7,138.6,136.7,135.5,134.7,131.6,130.0,129.1,117.8$, 116.0. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{mol}^{-1} . \mathrm{L}^{2} \mathrm{~cm}^{-1}\right) 302$ (22700), 355 (24200), 418 (35400), 573 (12900), 775 (5600).: HRMS (ESI), $m / z:[M]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NiO}_{2}: 550.0934$, Found 550.0947.

Fig. ESI3 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of complex $\mathbf{3}$ in CDCl_{3}.

Fig. ESI4 ${ }^{13} \mathrm{C}-$ NMR spectrum of complex $\mathbf{3}$ in CDCl_{3}.

2,2'-bisdipyrrin 4: A 12 M solution of $\mathrm{HCl}(20 \mathrm{~mL})$ was added to a $\mathrm{CHCl}_{3}(80 \mathrm{~mL})$ solution of complex $3(0.56 \mathrm{~g} ; 1.02 \mathrm{mmol})$ and the mixture was stirred at room temperature overnight. Upon addition of a saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, the organic layer turned from green to dark blue. The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated affording 2,2'-bisdipyrrin 4 as a dark blue solid ($0.5 \mathrm{~g}, 99 \%$). Single crystals were obtained by slow evaporation of a solution of the complex in $\mathrm{CHCl}_{3} . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.14(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}), 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhH})$, 7.72 (d, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhH}), 7.64$ (s, 2H, pyrroleH), $7.02(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}$, pyrroleH), 6.68 (d, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}$, pyrroleH), 6.52 (d, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}$, pyrroleH), $6.44(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}$, pyrroleH). $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 191.9, 153.1, 145.2, 143.5, 139.6, 139.0, 138.8, 136.6, 131.8, 131.7, 129.2, 126.5, 120.8, 116.7. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{mol}^{-1} . \mathrm{L}^{2} \mathrm{~cm}^{-1}\right): 258$ (31300), 280 (26000), 332 (24300), 413 (22700), 591 (37600). HRMS (ESI), $m / z:[M]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}: 495.1816$, Found 495.1775 .

Fig. ESI5 ${ }^{1} \mathrm{H}$-NMR spectrum of 2,2'-bis-dipyrrin $\mathbf{4}$ in CDCl_{3}.

Fig. ESI6 ${ }^{13} \mathrm{C}$-NMR spectrum of 2,2'-bis-dipyrrin 4 in CDCl_{3}.

Helicate 1: A MeOH $(60 \mathrm{~mL})$ solution of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(78 \mathrm{mg} ; 0.36 \mathrm{mmol})$ was added to a $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$ solution of ligand $4(0.16 \mathrm{~g} ; 0.32 \mathrm{mmol})$. Upon stirring for 24 hours at room temperature, the solution turned from dark blue to dark green. After evaporation under reduced pressure, the residue was washed with $\mathrm{MeOH}(3 \times 50 \mathrm{~mL})$ affording helicate $1(0.17$ $\mathrm{g}, 94 \%) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.13(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CHO}), 7.95(\mathrm{~d}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{PhH}), 7.75(\mathrm{~d}$, $4 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{PhH}$), 7.66 (d, 4H, $J=7.8 \mathrm{~Hz}, \mathrm{PhH}$), 7.22 (d, 4H, $J=7.8 \mathrm{~Hz}, \mathrm{PhH}$), 6.98 (s, 4 H, pyrroleH), $6.51(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH), $6.44(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH), $6.35(\mathrm{~d}$, $J=4.1 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH), 6.31 (d, $J=4.3 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH). $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 191.9$, $154.9,150.4,145.4,144.8,141.6,140.9,136.5,132.9,132.2,132.2,131.7,128.7,128.4$, 118.4, 117.3. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}\right): 257$ (71700), 284 (60800), 345 (60000), 432 (110200), 646 (66000) . HRMS (ESI), $m / z:[M]^{+}$calcd. for $\mathrm{C}_{64} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Zn}_{2}: 1112.1750$, Found 1112.1804.

Fig. ESI7 ${ }^{1} \mathrm{H}$-NMR spectrum of helicate $\mathbf{1}$ in CDCl_{3}.

Fig. ESI8 ${ }^{13} \mathrm{C}$-NMR spectrum of helicate $\mathbf{1}$ in CDCl_{3}.

Fig. ESI 9 HSQC (top) and HMBC (bottom) correlation experiments of helicate $\mathbf{1}$ in CDCl_{3} (500 MHz). The numbering scheme used for the assignment of the proton and carbon atoms of a quarter of the helicate is shown as an insert.

Fig. ESI10 HRMS spectrum of helicate 1.

Helicate 5: To a dry $\mathrm{CHCl}_{3}(250 \mathrm{~mL})$ solution of helicate $\mathbf{1}\left(50 \mathrm{mg} ; 4.48 \times 10^{-2} \mathrm{mmol}\right)$, a dry $\mathrm{CHCl}_{3}(250 \mathrm{~mL})$ solution of m-xylylenediamine ($12.4 \mu \mathrm{~L} ; 9.41 \times 10^{-2} \mathrm{mmol}, 2$ equiv.) and TFA (0.01 equiv) were added under argon. The mixture was stirred at room temperature for 24 hours. It was then evaporated under reduced pressure affording 5 as a dark solid (58 mg , $98 \%) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.53(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhH}), 7.59(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhH}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhH}), 7.44(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhH}), 7.39-7.35(\mathrm{~m}, 6 \mathrm{H}$, PhH/pyrroleH), 7.23 (d, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhH}$), 7.1 (d, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhH}), 6.61(\mathrm{~d}, J=4.3$ $\mathrm{Hz}, 4 \mathrm{H}$, pyrroleH $), 6.47(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH $), 6.38(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH), 6.31 (d, $J=4.3 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH), 5.08 (d, $J=15.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$), $4.92(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) . \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 162.1,155.5,150.1,146.3,142.0,141.7,141.0,140.5,136.7$, 133.8, 132.9, 132.4, 131.1, 129.1, 128.2, 125.2, 124.7, 117.7, 117.3, 63.6. $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm}$ ($\varepsilon / \mathrm{mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}$): 257 (43600), 349 (44400), 431 (56300), 473 (22500), 577 (50200). HRMS (ESI), $m / z:[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{80} \mathrm{H}_{56} \mathrm{~N}_{12} \mathrm{Zn}_{2}: 1312.3328$, Found 1312.3338.

Fig. ESI11 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of helicate 5 in CDCl_{3}.

Fig. ESI12 ${ }^{13} \mathrm{C}$-NMR spectrum of helicate $\mathbf{5}$ in CDCl_{3}.

Fig. ESI 13 HSQC (top) and HMBC (bottom) correlation experiments of helicate $\mathbf{5}$ in CDCl_{3} $(500 \mathrm{MHz}$). The numbering scheme used for the assignment of the proton and carbon atoms of a quarter of the helicate is shown as an insert.

Fig. ESI14 HRMS spectrum of helicate 5.

Helicate 6: A solution of $\mathrm{NaBH}_{3} \mathrm{CN}(8 \mathrm{mg}, 0.12 \mathrm{mmol}$, 8 eq.$)$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added to a solution of $5(20 \mathrm{mg}, 0.015 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CHCl}_{3}(15 \mathrm{ml})$. Then 0.75 ml of TFA solution (1.75 $\mu \mathrm{L}$ in $50 \mathrm{~mL} \mathrm{CHCl}_{3}$) was added and the mixture was stirred at room temperature and monitored by H NMR. After 64 hours, $\mathrm{NaBH}_{3} \mathrm{CN}(8 \mathrm{mg}, 0.12 \mathrm{mmol}, 8 \mathrm{eq})$ were added, then after 18 additional hours, 0.75 mL of TFA solution ($1.75 \mu \mathrm{~L}$ in 50 mLCHCl$)_{3}$) was added and stirring was continued for 5 days. The reaction mixture was diluted with CHCl_{3} and washed with water 3 times. The organic layer was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The residue was purified by two successive column chromatographies $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{TEA}: 90 / 10 / 4\right)$ then $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{TEA}: 95 / 5 / 1\right)$ to give 13 mg of $\mathbf{6}$ as a mixture with TEA. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.62(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhH}), 7.46(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhH})$, 7.38 (m, 4H, PhH), 7.33 (m, 6H, PhH), 7.44 (m 4H, PhH), 7.07 (m, 8H, PhH/pyrroleH), 6.66 (dd, $J=1.0$ and $4.1 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH), $6.35(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH), $6.30(\mathrm{dd}, J=1.0$ and $4.1 \mathrm{~Hz}, 4 \mathrm{H}$, pyrroleH), $3.95\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right)$. MS (ESI), $m / z:[M]^{2+}$ calcd. for $\mathrm{C}_{80} \mathrm{H}_{64} \mathrm{~N}_{12} \mathrm{Zn}_{2}$: 660.19, Found 660.20.

Fig. ESI15 ${ }^{1} \mathrm{H}$-NMR spectrum of helicate $\mathbf{6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Traces of NEt_{3} are present.

Fig. ESI16 HRMS spectrum of helicate 6.

X-Ray diffraction

Data (Table ESI1) were collected on a Bruker SMART CCD diffractometer with MoK α radiation. The structures were solved using SHELXS-97 and refined by full matrix least-squares on F^{2} using SHELXL-2014 with anisotropic thermal parameters for all non-hydrogen atoms. ${ }^{2}$ Hydrogen atoms were introduced at calculated positions and not refined (riding model). In the structure of $\mathbf{4}\left(\mathrm{CHCl}_{3}\right)$, the chloroform molecule is disordered over two positions that have been modelled accordingly.
CCDC 1893175-1893178 contain the supplementary crystallographic data for compounds 1-4. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Table ESI1. Crystallographic data for compounds 1-4.

	1	2	3	$4\left(\mathrm{CHCl}_{3}\right)$
Formula	$\mathrm{C}_{64} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Zn}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{NiO}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NiO}_{2}$	$\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$
FW	1115.78	553.24	551.23	613.90
Crystal system	Tetragonal	Triclinic	Triclinic	Monoclinic
Space group	$P-4 n 2$	$P-1$	$P-1$	$P 2_{1} / \mathrm{n}$
a / \AA	11.9527(3)	9.7819(2)	9.8321(3)	11.4063(4)
b / \AA	11.9527(3)	11.6608(3)	10.7832(3)	9.7778(3)
c / \AA	17.7035(7)	12.9613(3)	13.3416(3)	13.4576(4)
$\alpha /{ }^{\circ}$		110.8970(10)	103.1690(10)	
$\beta 1^{\circ}$		98.8930(10)	102.6240(10)	94.7850(10)
$\gamma 1^{\circ}$		111.0520(10)	111.8220(10)	
V / \AA^{3}	2529.25(16)	1219.34(5)	1204.51(6)	1495.67(8)
Z	2	2	2	2
T / K	173(2)	173(2)	173(2)	173(2)
μ / mm^{-1}	1.010	0.836	0.846	0.344
Refls. coll.	40519	24117	23901	28945
Ind. refls. ($\mathrm{R}_{\mathrm{int}}$)	3750 (0.0574)	6572 (0.0251)	6497 (0.0408)	4084 (0.0233)
$R_{1}(\mathrm{I}>2 \sigma(\mathrm{I}))^{\mathrm{a}}$	0.0532	0.0326	0.0416	0.0701
$w R_{2}(\mathrm{I}>2 \sigma(\mathrm{I}))^{\text {a }}$	0.1285	0.0768	0.0946	0.1929
$R_{1}\left(\right.$ all data) ${ }^{\text {a }}$	0.0809	0.0396	0.0628	0.0802
$w R_{2}\left(\right.$ all data) ${ }^{\text {a }}$	0.1443	0.0800	0.1051	0.2026
GOF	1.050	1.053	1.030	1.039

References

1. (a) L. Yu, K. Muthukumaran, I. V. Sazanovich, C. Kirmaier, E. Hindin, J. R. Diers, P. D. Boyle, D. F. Bocian, D. Holten and J. S. Lindsey, Inorg. Chem., 2003, 42, 6629. (b) K. Muthukumaran, S. H. H. Zaidi, L. Yu, P. Thamyongkit, M. E. Calder, D. S. Sharada and J. S. Lindsey, J. Porphyrins Phthalocyanines, 2005, 9, 745.
2. G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3.
