SUPPORTING INFORMATION

Copper-phthalocyanine coordination polymer as a reusable catechol oxidase biomimetic catalyst

Kelly A.D.F. Castro,^{#,*,a,b} Flávio Figueira,^{#,*,a,c} Filipe A. Almeida Paz,^c João P.C.
Tomé,^{a,d} Roberto S. da Silva,^b Shirley Nakagaki,^e M. Graça P.M.S. Neves,^a José A.
S. Cavaleiro,^a Mário M.Q. Simões,^{*,a}

^aQOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193
 Aveiro, Portugal
 ^bFaculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
 ^cCICECO- Aveiro Institute of Materials, Department of Chemistry, 3810-193 Aveiro, Portugal
 ^dCentro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior
 Técnico, Universidade de Lisboa, Av. Rovisco Pais, nº 1, 1049-001 Lisboa, Portugal
 ^eLaboratory of Bioinorganic and Catalysis and Department of Chemistry, Federal University
 of Paraná, Curitiba, Brazil

*Corresponding authors: msimoes@ua.pt; kellycastro@ua.pt; ffigueira@ua.pt #these two authors contributed equally to this work.

Index

2
4
5
6
6
8
10
10
11
11

NMR characterization:

Figure S1. ¹H-NMR spectrum of H₂PcSPy.

Figure S2. ¹³C-NMR spectrum of H₂PcSPy.

Figure S3. HSQC spectrum of H_2PcSPy .

Mass spectrometry:

Figure S4. MALDI-TOF mass spectrum of H₂PcSPy.

Figure S5. MALDI-TOF mass spectrum of CuPcSPy

Fluorescence:

Figure S6. Normalized fluorescence spectra of compounds H_2PcSPy and CuPcSPy by excitation at λ = 610 nm (OD for samples at 610 nm = 0.05).

ATR-FTIR Spectroscopy:

H₂PcSPy	CuPcSPy	Cu₄CuPcSPy	Band assignment
3282	L		NH stretching
3039	3054		Ar-H stretching
	1706		C=O stretching from DMF molecules
1603			N–H deformation
1569	1573	1571	C=C stretching
1536	1542		C=N stretching
1500	1506	1505	C- N stretching
1477	1479	1482	C–H in-plane bending
1442	1439	1442	C–C stretching in isoindole
1299			N–H deformation
1256	1253	1256	C–N stretching in isoindole
	1143	1139	C–H in-plane deformation
1128			C–H in-plane deformation
1102	1100	1098	C–H in-plane deformation
1061	1064	1062	C–H in-plane deformation
1006			N–H in-plane bending vibration
	918	919	Metal ligand vibration
741	744	743	C–H out-of-plane deformation
		724	C–H out-of-plane deformation
700	704	706	C–H out-of-plane deformation
669	671	673	C-S-C stretching
636	638	637	C–C out-of-plane ring deformation

 Table S1. Band assignments for phthalocyanine and copper-phthalocyanines.

Figure S7. ATR-FTIR spectra of the metal-free phthalocyanine and copper phthalocyanines: (a) H_2PcSPy , (b) $Cu_4CuPcSPy$ and (c) CuPcSPy.

Electrochemical studies:

Figure S8. Cyclic voltammetry of 0.1 mM of H_2PcSPy in 0.1 M TBAPF₆ in dimethylformamide as support electrolyte. Ferrocene (Fc) in DMF (+0.39 V *versus* Ag/AgCI) was employed as internal standard.

Figure S9. Cyclic voltammetry of 0.1 mM of **CuPcSPy** in 0.1 M TBAPF₆ in dimethylformamide as support electrolyte. Ferrocene in DMF (+0.39 V *versus* Ag/AgCl) was employed as internal standard.

Figure S10. PXRD patterns of Cu₄CuPcSPy (black line), CuPcSPy (red line) and [Cu(AcO)₂] (blue line).

EPR:

Figure S11. EPR spectra of powder samples at 77 K for (a) CuPcSPy and (b) Cu₄CuPcSPy.

UV-Vis spectrophotometry:

Figure S12. UV-Vis scans for the formation of the 3,5-DTBQ from 3,5-DTBC as a function of time.

Stability of the Cu₄CuPcSPy catalyst

Figure S13. EPR spectrum for **Cu₄CuPcSPy** recovered after the first reuse as catalyst in **3,5-DTBC** oxidation.

Figure S14. UV-Vis spectrum for **Cu₄CuPcSPy** recovered after the first reuse as catalyst in **3,5-DTBC** oxidation.

Figure S15. ATR-FTIR spectrum for Cu₄CuPcSPy recovered after the first reuse as catalyst in 3,5-DTBC oxidation.