Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

> Supporting information Metal ion exchange in Prussian blue analogues: Cu(II)-exchanged Zn-Co PBAs as highly selective catalysts for A³ coupling

Carlos Marquez, Francisco G. Cirujano, Simon Smolders, Cédric Van Goethem, Ivo Vankelecom, Dirk De Vos*, and Trees De Baerdemaeker*

Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.

*Corresponding authors: <u>dirk.devos@kuleuven.be</u>; <u>trees.debaerdemaeker@kuleuven.be</u>.

Table of content

Synthesis of Cu _x Zn _{1-x} -Co PBAs by co-precipitation	2
Preparation of Cu(II)-supported materials	2
Nitroaldol (Henry) reaction	2
Elemental analysis of Zn(II) exchanged samples	3
Solution pH during the Cu(II) exchange process	4
UV/vis spectra	5
Additional XRD patterns	6
Nitrogen physisorption and textural properties	7
Difference IR spectra of adsorbed pyridine	8
TGA profiles	8
TGA-MS profile of [Cu(OAc) ₂] _{0.90} @Zn _{0.10} -Co PBA	9
FTIR spectra	10
Additional catalytic data for the A^3 coupling reaction of phenylacetylene, piperidine and	11
benzaldehyde	11
Catalytic data for the Nitroaldol (Henry) reaction	12
Hot filtration test	12
Recycling test	13
XRD pattern of [Cu(OAc) ₂] _{0.90} @Zn _{0.10} -Co PBA after reaction	13
References	14

Synthesis of Cu_xZn_{1-x}-Co PBAs by co-precipitation

 Cu_xZn_{1-x} -Co PBAs were synthesized following previously reported procedures.¹ In short, a solution of $K_3[Co(CN)_6]$ (0.1 M, 15 ml) was mixed with a solution (150 ml) containing specific amounts of CuCl₂.2H₂O and ZnCl₂ (15 mmol in total). After stirring for 3 h, the precipitate was recovered by centrifugation, washed three times with distilled water and dried at 60°C overnight.

Preparation of Cu(II) based catalysts

Silica gel (Sigma-Aldrich, high purity grade, pore size 150 Å, 200–425 mesh), commercial Beta zeolite (CP811BL25, Si/Al = 12.5) and MCM-41 (synthesized following the procedure reported by Grün et al.²) were dispersed (5 g/L) in 50 mM aqueous solutions of Cu(CH₃COO)₂.H₂O. The final solution was stirred for 16 h at room temperature. The solids were then centrifuged, washed 3 times with distilled water and dried at 60°C overnight to obtain the samples: Cu(II)/MCM-41 (Cu wt.% = 19.4), Cu(II)/BEA (Cu wt.% = 23.6) and Cu(II)/SiO₂ (Cu wt.% = 19.8).

Cu(II)-BTC was purchased from Sigma-Aldrich (Basolite[®] C 300, produced by BASF. Cu wt.% = 26.2).

Nitroaldol (Henry) reaction

To test the basic character of selected PBAs, the nitroaldol (Henry) reaction was carried out. To this end, 20 mg of pre-activated catalyst, 1 mmol of benzaldehyde and 5 mmol of nitromethane were added to a crimp cap glass reactor and placed in a pre-heated aluminum block. The reaction was carried out at 90°C, collecting liquid samples of the product mixture after 48 and 96 h reaction time. The products were analyzed by GC (Shimadzu 2014 GC equipped with a FID detector and a CP-Sil 5 CB column) and GC-MS (Agilent 6890 gas chromatograph, equipped with a HP-5MS column, coupled to a 5973 MSD mass spectrometer).

РВА	Zn(II) salt	Concentration (mM)	Time (h)	Cu (wt.%)	Zn (wt.%)	Co (wt.%)	Cu _{loss} ^a (wt.%)	IED _{Zn} ^b (%)
CuCl ₂ -Co		-	-	35.8	-	17.6	-	-
Cu(OAc) ₂ -Co		-	-	38.0	-	17.0	-	-
[Zn(OAc)2]0.01@Cu0.99-Co	Zn(OAc) ₂	50	16	33.6	0.254	18.1	1.05	6.15
[Zn(OAc) ₂] _{0.09} @Cu _{0.91} -Co	Zn(OAc) ₂	100	16	31.1	3.01	18.0	3.05	13.1
[Zn(OAc) ₂] _{0.12} @Cu _{0.88} -Co ^c	Zn(OAc) ₂	100	16	29.6	4.09	18.1	5.02	17.3
[Zn(OAc) ₂] _{0.77} @Cu _{0.23} -Co ^d	Zn(OAc) ₂	100	16	8.03	27.0	17.6	25.6	77.6
[Zn(OAc) ₂] _{0.78} @Cu _{0.22} -Co ^e	Zn(OAc) ₂	100	16	7.60	26.8	17.8	27.5	78.8
[ZnCl ₂] _{0.30} @Cu _{0.70} -Co	ZnCl ₂	50	16	24.1	10.5	17.8	10.1	32.7
[ZnCl ₂] _{0.46} @Cu _{0.54} -Co	ZnCl ₂	100	16	18.9	16.2	17.7	16.5	47.2
[ZnCl ₂] _{0.62} @Cu _{0.38} -Co ^e	ZnCl ₂	100	16	12.8	22.1	17.7	22.1	64.2
[ZnCl ₂] _{0.63} @Cu _{0.37} -Co ^d	$ZnCl_2$	100	16	13.2	21.8	17.7	22.2	63.1
Zn-Co	-	-	-	-	32.0	18.7	-	-

Table S1. Elemental analysis of Zn(II) exchanged samples and the remaining supernatant after the ionexchange process

Starting material: CuCl₂-Co PBA. ^a Cu wt.% loss of the sample, based on the concentration of Cu released into solution during the exchange process. ^b Atomic ion exchange efficiency defined as atoms of Cu exchanged per atoms of Cu present in CuCl₂-Co PBA. ^cThe ion exchange process was carried out at 40 °C. ^d The ion exchange process was carried out at 60 °C. ^e The ion exchange process was carried out at 80 °C.

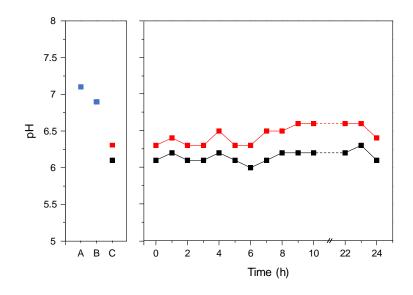


Figure S1. Solution pH during the Cu(II) exchange process with $Cu(ClO_4)_2$ (red) and $Cu(OAc)_2$ (black). A: pH of water. B: pH of water + Zn-Co PBA (1 g/L). C: pH of a 1g/L solution of $Cu(OCl_4)_2$ (red) and $Cu(OAc)_2$ (black).

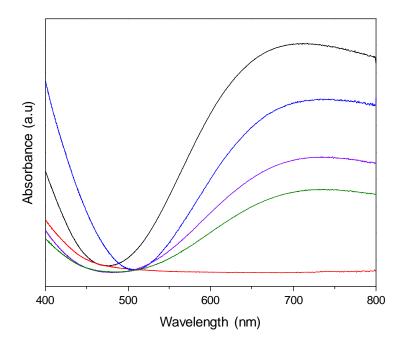


Figure S2. UV/vis spectra of Zn-Co (red), [Cu(OAc)₂]_{0.20}@Zn_{0.80}-Co (green), [Cu(OAc)₂]_{0.45}@Zn_{0.55}-Co (violet), [Cu(OAc)₂]_{0.90}@Zn_{0.10}-Co (blue) and CuCl₂-Co PBA (black).

No band corresponding to the presence of Co(II) – expected around 500 nm – was observed in the spectra of any of the studied samples, which exhibit only one broad band, assigned to the d-d transitions of Cu(II).³⁻⁵ This not only indicates the presence of Cu(II) in the PBA structure after ion exchange, but also that the $[Co(CN_6]^{3-}$ do not undergo a redox process. This confirms that a mechanism similar to that observed in electrochemical insertions is not the main pathway of the Cu(II) exchange.

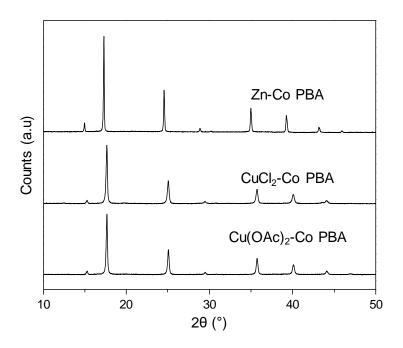


Figure S3. XRD patterns of Zn-Co, CuCl₂-Co and Cu(OAc)₂-Co PBA.

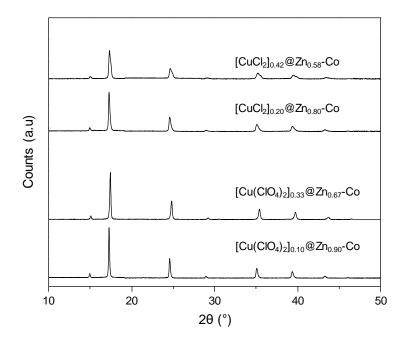


Figure S4. XRD patterns of the [CuCl₂]_x@Zn_{1-x}-Co and [Cu(ClO₄)₂]_x@Zn_{1-x}-Co PBAs.

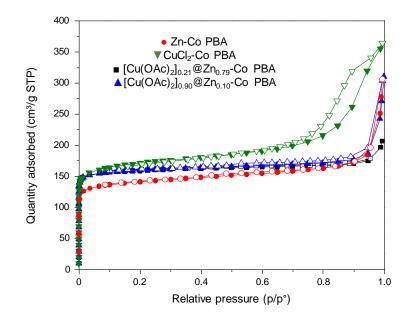


Figure S5. Nitrogen physisorption isotherms of selected PBA samples. Filled symbols denote adsorption and open symbols denote desorption.

PBA	S _{BET} (m²/g)	V _{micro} (cm ³ /g)	S _{ext} (m²/g)
Zn-Co	453	0.172	106
CuCl ₂ -Co	540	0.221	145
[Cu(OAc) ₂] _{0.21} @Zn _{0.79} -Co	479	0.202	60
[Cu(OAc) ₂] _{0.90} @Zn _{0.10} -Co	482	0.217	72

Table S2. Textural properties of selected PBA samples determined from N₂ physisorption at -196.15 °C.

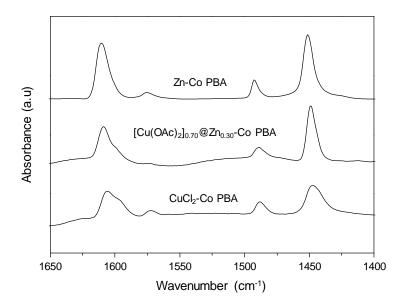


Figure S6. Difference IR spectra of adsorbed pyridine (normalized to 10 mg of PBA/cm²) for selected PBA samples.

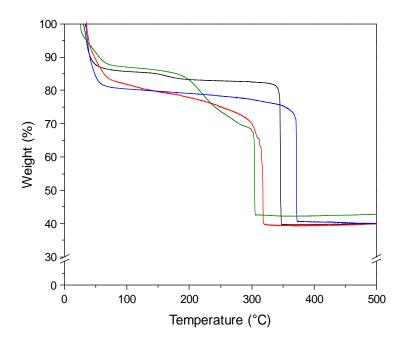


Figure S7. TGA profiles for Zn-Co PBA (black), CuCl₂-Co PBA (blue), [Cu(OAc)₂]_{0.21}@Zn_{0.79}-Co PBA (red) and [Cu(OAc)₂]_{0.90}@Zn_{0.10}-Co PBA (green).

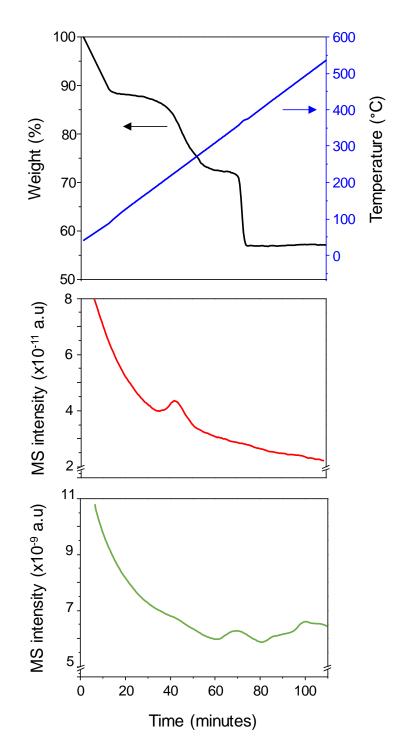


Figure S8. Thermal decomposition of $[Cu(OAc)_2]_{0.90}$ @Zn_{0.10}-Co PBA investigated by monitoring the m/z values: 44 (corresponding to CO₂, green line) and 60 (corresponding to CH₃COOH, red line).

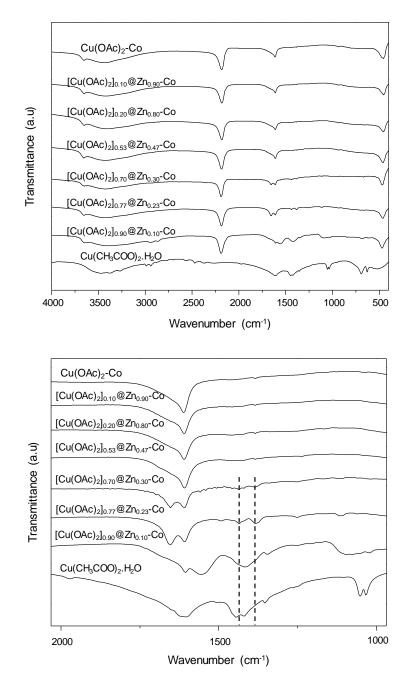


Figure S9. Top: FTIR spectra of selected PBA samples. Bottom: focus on the -COO- stretching region.

PBA	X (%) ^a	S (%) ^b	Y (%)
Zn-Co	4	>99	4
[Cu(ClO ₄) ₂] _{0.10} @Zn _{0.90} -Co	5	>99	5
[Cu(ClO ₄) ₂] _{0.33} @Zn _{0.67} -Co	25	95 ^c	24
[Cu(OAc) ₂] _{0.11} @Zn _{0.89} -Co	12	>99	12
[Cu(OAc) ₂] _{0.12} @Zn _{0.88} -Co	13	>99	13
[Cu(OAc) ₂] _{0.15} @Zn _{0.85} -Co	19	98 ^c	19
[Cu(OAc) ₂] _{0.19} @Zn _{0.81} -Co	22	>99	22
[Cu(OAc) ₂] _{0.20} @Zn _{0.80} -Co	26	>99	26
[Cu(OAc) ₂] _{0.21} @Zn _{0.79} -Co	27	>99	27
[Cu(OAc) ₂] _{0.45} @Zn _{0.55} -Co	55	96 ^c	53
[Cu(OAc) ₂] _{0.53} @Zn _{0.47} -Co	62	87 ^c	54
[Cu(OAc) ₂] _{0.67} @Zn _{0.33} -Co	65	90 ^c	59
[Cu(OAc) ₂] _{0.70} @Zn _{0.30} -Co	82	90 ^c	74
[Cu(OAc) ₂] _{0.77} @Zn _{0.23} -Co	>99	98 ^c	98
[Cu(OAc) ₂] _{0.90} @Zn _{0.10} -Co	96	98 ^c	94
[CuCl ₂] _{0.20} @Zn _{0.80} -Co	18	88 ^c	16
[CuCl ₂] _{0.42} @Zn _{0.58} -Co	53	98 ^c	52
[CuCl ₂] _{0.55} @Zn _{0.45} -Co	55	95°	52
[CuCl ₂] _{0.83} @Zn _{0.17} -Co	61	97 ^c	59
CuCl ₂ -Co ^b	28	60 ^c	17
Cu(OAc) ₂ -Co ^c	36	66 ^c	24
Cu _{0.14} Zn _{0.86} -Co	7	95°	7
Cu _{0.26} Zn _{0.74} -Co	11	96 ^c	11
Cu _{0.41} Zn _{0.59} -Co	51	>99	51
Cu _{0.67} Zn _{0.33} -Co	53	>99	53
Cu _{0.86} Zn _{0.14} -Co	60	93 ^c	56
Cu _{0.96} Zn _{0.04} -Co	54	94 ^c	51

Table S3. Catalytic activity of the prepared PBAs for the A³ coupling reaction of phenylacetylene, piperidine and benzaldehyde.

^a Conversion of phenylacetylene. ^b Selectivity to the A³ product based on phenylacetylene. ^c Acetophenone was the only phenylacetylene-derived side-product detected. Reaction conditions: phenylacetylene (0.05 mmol), piperidine (0.1 mmol) and benzaldehyde (0.1 mmol). 110°C. 10 mg of PBA. 6 h reaction time.

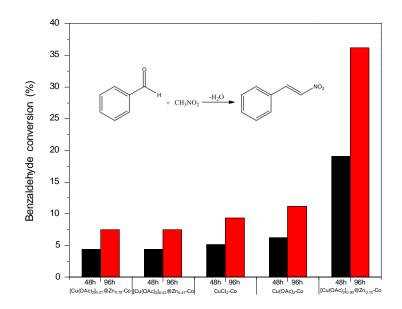


Figure S10. Benzaldehyde conversion in the nitroaldol (Henry) reaction of nitromethane (5 mmol) and benzaldehyde (1 mmol) at 90°C over selected PBA samples (20 mg).

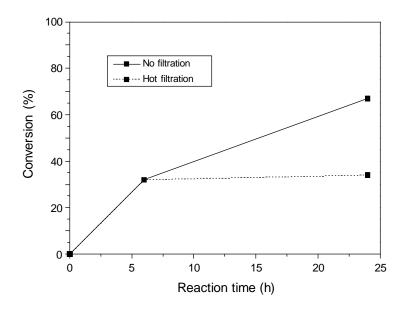


Figure S11. Conversion of phenylacetylene in the A³ coupling of phenylacetylene (0.05 mmol), piperidine (0.1 mmol) and benzaldehyde (0.1 mmol) at 110°C over 1 mg of [Cu(OAc)₂]_{0.90}@Zn_{0.10}-Co. Dashed lines represent the conversion after removal of the catalyst in the hot filtration test.

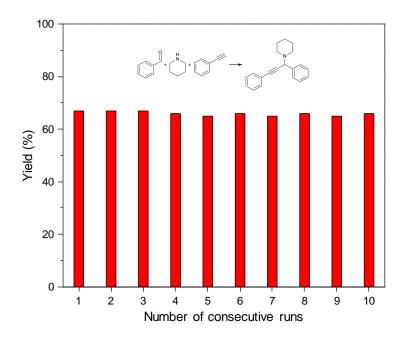


Figure S12. Recycling tests for the A³ coupling of phenylacetylene (0.05 mmol), piperidine (0.1 mmol) and benzaldehyde (0.1 mmol) at 110°C over 1 mg of [Cu(OAc)₂]_{0.90}@Zn_{0.10}-Co. Yield of A³ product after 24 h reaction time.

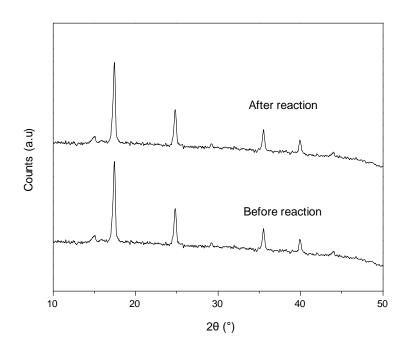


Figure S13. XRD pattern of [Cu(OAc)₂]_{0.90}@Zn_{0.10}-Co PBA before and after the A³ coupling reaction. Reaction conditions: phenylacetylene (0.05 mmol), piperidine (0.1 mmol) and benzaldehyde (0.1 mmol). 110°C. 10 mg of catalyst. 24 h reaction time.

References

- C. Marquez, F. G. Cirujano, C. Van Goethem, I. Vankelecom, D. De Vos and T. De Baerdemaeker. *Catal. Sci. Technol.*, 2018, 8, 2061-2065.
- 2. M. Grün, I. Lauer and K. K. Unger. *Adv. Mater.*, 1991, **9**, 254-257.
- 3. H. Zhang, C. Li, D. Chen, J. Zhao, X. Jiao and Y. Xia. *CrystEngComm*, 2017, **19**, 2057–2064.
- 4. N. Shimamoto, S-i. Ohkoshi, O. Sato and K. Hashimoto. *Inorg. Chem.* 2002, **41**, 678-684.
- 5. S. Godlewska, J. Jezierska, K. Baranowska, E. Augustin and A. Dolega, *Polyhedron*, 2013, **65**, 288–297.