Electronic Supplementary Information (ESI)

Eu-doped layered yttrium hydroxides sensitized by series of benzenedicarboxylate and

sulphobenzoate anions

Alexey Yapryntsev,¹ Bachodur Abdusatorov,² Ilya Yakushev,¹ Roman Svetogorov,³ Andrey Gavrikov,¹

Anfisa Rodina,² Yelena Fatyushina,¹ Alexander Baranchikov,¹ Yan Zubavichus,³ Vladimir Ivanov^{1,4}

1 Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of

Sciences, Moscow 119991, Russia

2 Lomonosov Moscow State University, Moscow 119991, Russia

3 National Research Center Kurchatov Institute, Moscow 123182, Russia

4 National Research Tomsk State University, Tomsk 634050, Russia

van@igic.ras.ru

Fig. S1. Thermal analysis data for $(Y_{0.95}Eu_{0.05})_2(OH)_5NO_3 1.7H_2O$ compound: (a) thermogravimetric curve and (b) DTA curve.

Table S1. EDX data for the product obtained by refluxing HMTA, $NaNO_3$, $Y(NO_3)_3 \cdot nH_2O$ and $Eu(NO_3)_3 \cdot nH_2O$ solutions mixture.

Element	Y	Eu
Atomic content	0.95	0.05

Fig. S2. SEM images of $(Y_{0.95}Eu_{0.05})_2(OH)_5NO_3 \cdot 1.7H_2O$ obtained by refluxing a HMTA, NaNO₃, $Y(NO_3)_3 \cdot nH_2O \mu Eu(NO_3)_3 \cdot nH_2O$ solution mixture and the products of its ion exchange reactions with aqueous solutions of (a) phthalic, (b) isophthalic, (c) terephthalic, (d) 2-sulphobenzoic, (e) 3-sulphobenzoic and (f) 4-sulphobenzoic acid salts under HTMW treatment (200 °C, 30 min).

Fig. S5. (a) Calculated and (b) experimental X-ray diffraction patterns of 1 compound.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(13)-H(13A)O(3)	0.896(17)	1.990(17)	2.850(4)	161(5)	
O(6)-H(6)O(13)#1	0.85	2.15	2.976(4)	164.1	
O(7)-H(7)O(3)#2	0.82	2.25	3.060(3)	166.7	
O(10)-H(10)O(3)#2	0.85	2.22	3.010(3)	155.5	
O(11)-H(11)O(2)#2	0.84	2.05	2.838(3)	155.7	
O(8)-H(8)O(13)#3	0.85	2.17	2.982(4)	159.6	

Table S2. Hydrogen bonds for **1** compound [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y-1/2,-z+1/2 #2 x+1,y,z #3 x+1,-y+3/2,z-1/2

Fig. S6. Asymmetric unit of $Y_3(OH)_7(C_7H_4O_5S) \cdot H_2O$ with thermal ellipsoids drawn at a 45% probability level.