Supporting Information

Mono-Transition-Metal-Substituted Polyoxometalate Intercalated

Layered Double Hydroxides for the Catalytic Decontamination of

Sulfur Mustard Simulant

Xiangrong Sun, Jing Dong, Zhen Li, Huifang Liu, Xiaoting Jing, Yingnan Chi*, Changwen Hu

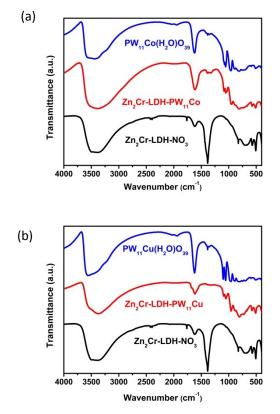


Figure S1. (a) FT-IR spectra of Zn_2Cr -LDH-PW₁₁Co; (b) FT-IR spectra of Zn_2Cr -LDH-PW₁₁Cu.

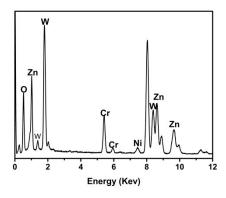


Figure S2. EDS of Zn_2Cr -LDH-PW₁₁Ni.

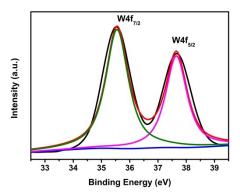


Figure S3. XPS spectra for the W4f core level spectrum of Zn_2Cr -LDH-PW₁₁Ni.

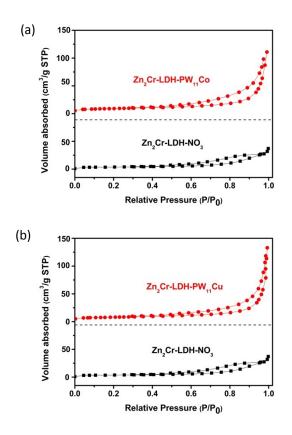


Figure S4. (a) N_2 adsorption-desorption isotherms of $Zn_2Cr-LDH-PW_{11}Co$; (b) N_2 adsorption-desorption isotherms of $Zn_2Cr-LDH-PW_{11}Cu$.

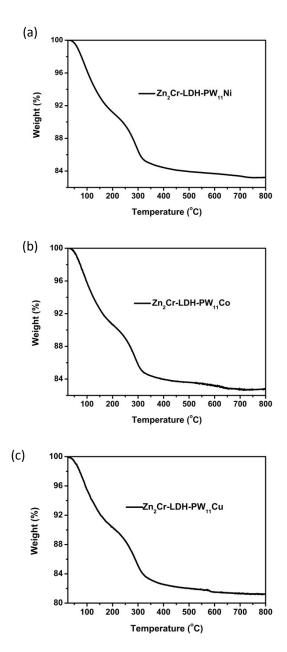


Figure S5. (a) TG analysis of Zn₂Cr-LDH-PW₁₁Ni; (b) TG analysis of Zn₂Cr-LDH-PW₁₁Co. (c) TG analysis of Zn₂Cr-LDH-PW₁₁Cu.

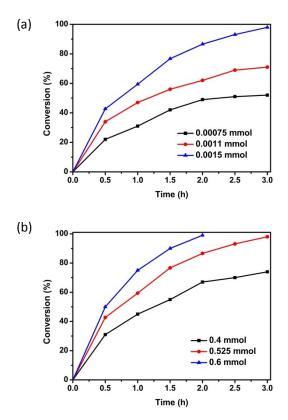


Figure S6. (a) Decontamination of CEES with different amounts of $Zn_2Cr-LDH-PW_{11}Ni$. Reaction conditions: $Zn_2Cr-LDH-PW_{11}Ni$, CEES (0.5 mmol), 1,3-dichlorobenzene (0.25 mmol), 3% aqueous H_2O_2 (0.525 mmol) and acetonitrile (4 mL) at room temperature; (b) Decontamination of CEES with different amounts of 3% aqueous H_2O_2 . Reaction conditions: $Zn_2Cr-LDH-PW_{11}Ni$ (0.0015 mmol), CEES (0.5 mmol), 1,3-dichlorobenzene (0.25 mmol), 3% aqueous H_2O_2 . Reaction conditions: $Zn_2Cr-LDH-PW_{11}Ni$ (0.0015 mmol), CEES (0.5 mmol), 1,3-dichlorobenzene (0.25 mmol), 3% aqueous H_2O_2 and acetonitrile (4 mL) at room temperature.

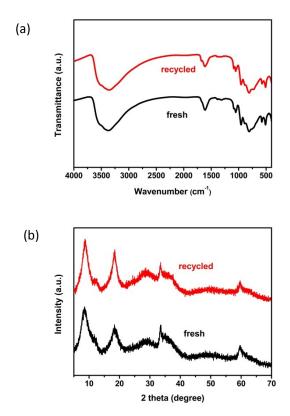


Figure S7. (a) FT-IR spectra of recycled $Zn_2Cr-LDH-PW_{11}Ni$ and fresh $Zn_2Cr-LDH-PW_{11}Ni$; (b) PXRD spectra of recycled $Zn_2Cr-LDH-PW_{11}Ni$ and fresh $Zn_2Cr-LDH-PW_{11}Ni$.

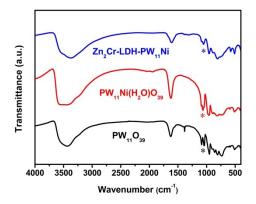


Figure S8. FT-IR spectra of Zn_2Cr -LDH-PW₁₁Ni, PW₁₁Ni and PW₁₁O₃₉. The P-O band splitting of Zn_2Cr -LDH-PW₁₁Ni (marked with blue star) was obviously weaker than that of PW₁₁O₃₉ (marked with black star), indicating that PW11Ni keeps integrity during intercalation process.^[1, 2]

Radical scavengers	Time (h)	Conversion (%)
-	3	98
<i>p</i> -benzoquinone (•O2−/•O ₂ H)	3	94
<i>tert</i> -butyl alcohol (•OH)	3	98
diphenylamine (•OH)	3	98

Table S1. The oxidation of CEES catalyzed by Zn_2Cr -LDH-PW₁₁Ni with adding radical scavengers.

Reaction conditions: CEES (0.5 mmol), 1,3-dichlorobenzene (internal standard, 0.25 mmol), radical scavengers (0.5 mmol) and Zn_2Cr -LDH-PW₁₁Ni (0.0015 mmol) were dispersed in acetonitrile (4 mL). After mixing evenly, 3 % aqueous H₂O₂ (0.525 mmol) was added to initiate the reaction.

References

- 1 F. Zonnevijlle, C. M. Touren, and G. F. Touren, *Inorg Chem*, 1982, **21**, 2742–2750.
- 2 J. H. Choi, J. K. Kim, D. R. Park, T. H. Kang, J. H. Song and I. K. Song, *J Mol Catal A: Chem*, 2013, **371**, 111-117.