Supporting Information

A supramolecular assembly bearing organic TADF chromophore: synthesis, characterization and light-driven cooperative acceptorless dehydrogenation of secondary amines

Duobin Chao*a and Mengying Zhao^b

^aSchool of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China.

^bSchool of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China.

Scheme S1. Synthetic routes for 1 and 1-Co.

2. Supplementary Figures

Fig. S1 HR-ESI-MS spectrum of assembly 1-Co (M = 1-Co).

Fig. S2 Partial HR-ESI-MS spectrum of assembly 1-Co.

Fig. S3 UV-vis absorption and photoluminescence (PL) spectra of 1 in CH_2Cl_2 at room temperature, $\lambda_{ex} = 400$ nm.

Fig. S4 PL spectra of chromophore 1 (10 μ M) in various solvents (toluene, TFH and CH₂Cl₂).

Fig. S5 Frontier orbitals for optimized chromophore **1** by DFT calculations B3LYP/6-31G(d) level for C, H, N, O atom.

Fig. S6 DFT calculations of species containing **1** and one Co^{III} moiety. DFT calculations were carried out using Gaussian 09 program. Geometry optimizations were performed with the B3LYP functional using the LANL2DZ basis set for Co and the 6-31G basis set for the other atoms, respectively. Polarization functions were added for Co ($\xi d = 2.78$) to the standard LANL2DZ

basis set.

Fig. S7 Transient PL decay of 1 in degassed CH₂Cl₂ at room temperature.

Fig. S8 Cyclic voltammogram of 1 (0.5 mmol) in CH_3CN at room temperature under N_2 . Tetranbutylammonium hexafluorophosphate (0.1 M) was used as the supporting electrolyte.

Fig. S9 Emission quenching titration experiments of 1 (10 μ M) upon addition of Co(dmgH)₂PyCl (0 – 52 μ M) in degassed THF (λ_{ex} = 400 nm).

Fig. S10 UV-vis absorption and photoluminescence (PL) spectra of 1-Co (10 μ M) in CH₂Cl₂ at room temperature, $\lambda_{ex} = 400$ nm.

Fig. S11 Transient PL decay of 1-Co in degassed CH₂Cl₂ at room temperature.

Fig. S12 Cyclic voltammogram of **1-Co** (0.5 mmol) in CH_3CN at room temperature under N_2 . Tetra–nbutylammonium hexafluorophosphate (0.1 M) was used as the supporting electrolyte.

Fig. S13 Emission quenching titration experiments of 1 (10 μ M) upon addition of 2a (0 – 52 μ M) in degassed THF (λ_{ex} = 400 nm).

Fig. S14 UV-vis absorption spectra of 1-Co upon blue light irradiation at room temperature.

Fig. S15 Cyclic voltammogram of 2a.

Fig. S16 Cyclic voltammogram of 2b.

Fig. S17 Cyclic voltammogram of 2c.

Fig. S18 Cyclic voltammogram of 2d.

Fig. S19 Cyclic voltammogram of 2e.

Fig. S20 HR-ESI-MS spectrum of chromophore 1 (M = 1).

Fig. S21 ¹H NMR spectrum of 4-(pyridin-4-ylmethoxy)-9H-carbazole in DMSO-d₆.

Fig. S22 ¹³C NMR spectrum of 4-(pyridin-4-ylmethoxy)-9H-carbazole in DMSO-d₆.

Fig. S23 ¹H NMR spectrum of 1 in DMSO-d₆.

Fig. S24 ¹³C NMR spectrum of 1 in DMSO-d₆.

Fig. S25 ¹H NMR spectrum of 1-Co in DMSO-d₆.

Fig. S26 ¹³C NMR spectrum of 1-Co in DMSO-d₆.

Characterization of products

3a: ¹H NMR (500 MHz, CDCl₃), δ (ppm): 8.36 (s, 1H), 7.77 (d, 2H, J = 3.0 Hz), 7.38-7.39 (m, 3H), 7.32 (d, 4H, J = 4.0 Hz), 7.24 (d, 1H, J = 4.0 Hz), 4.8 (s, 2H). ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 161.97, 139.44, 136.31,

130.79, 128.65, 128.55, 128.35, 128.04, 127.03, 65.10. HR-MS (m/z): found 196.1139 for [M +H]⁺ (calcd. 196.1126, $C_{14}H_{14}N^{+}$).

3b: ¹H NMR (500 MHz, CDCl₃), δ (ppm): 8.29 (s, 1H), 7.70 (d, 2H, J = 9.0 Hz), 7.23 (d, 2H, J = 8.5 Hz), 6.87-6.93 (m, 4H), 4.72 (s, 2H), 3.83 (s, 3H), 3.79 (s, 3H). ¹³C NMR (125 MHz, CDCl₃), δ (ppm):

161.68, 160.97, 158.65, 131.67, 129.83, 129.19, 113.98, 113.91, 64.42, 55.37, 55.31. HR-MS (m/z): found 256.1342 for $[M + H]^+$ (calcd. 256.1338, $C_{16}H_{18}NO_2^+$).

> **3c:** ¹H NMR (500 MHz, CDCl₃), δ (ppm): 8.34 (s, 1H), 7.65 (d, 2H, J = 8.0 Hz), 7.21 (d, 4H, 6.0 Hz), 7.14 (d, 2H, J = 8.0 Hz), 4.77 (s, 2H), 2.38 (s, 3H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 161.71,

140.99, 136.53, 136.36, 133.63, 129.31, 129.17, 128.25, 127.97, 64.82, 21.52, 21.12. HR-MS (m/z): found 224.1472 for $[M + H]^+$ (calcd. 224.1439, $C_{16}H_{18}N^+$).

3c

3d: ¹H NMR (500 MHz, CDCl₃), δ (ppm): 8.27 (s, 1H), 7.74-7.75 (m, 2H), 7.38-7.40 (m, 3H), 1.30 (s, 9H). ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 155.20, 137.18, 130.19, 128.53, 127.93, 57.26, 29.76. HR-MS (m/z): found 162.1291 for $[M + H]^+$ (calcd. 162.1283, C₁₁H₁₆N⁺).

3e: ¹H NMR (500 MHz, CDCl₃), δ (ppm): 8.35 (s, 1H), 7.34-7.38 (m, 1H), 7.26-7.32 (m, 2H), 7.5 (d, 1H, J = 7.5 Hz), 3.76-3.80 (m, 2H), 2.74 (t, 2H, J = 7.5 Hz). ^{13}C NMR (125 MHz, CDCl3), δ (ppm): 160.41, 136.35, 131.13, 127.44, 127.28, 127.11, 47.33, 25.03. HR–MS (m/z): found 132.0864 for $[M + H]^+$ (calcd. 132.0808, C₉H₁₀N⁺).

3f: ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.40 (d, 1H, J = 5.0 Hz), 7.26-7.29 (m, 1H), 7.19-7.23 (m, 1H), 7.10 (d, 1H, J = 5.0 Hz), 3.57-3.60 (m, 2H), 2.63 (t, 2H, J = 7.5 Hz), 2.32 (s, 3H). ¹³C NMR (125 MHz, CDCl₃), δ (ppm): 164.54, 137.40, 130.70, 129.51, 127.46, 126.93, 125.39, 46.8, 26.03, 23.22. HR-MS (m/z): found 146.0876

for $[M + H]^+$ (calcd. 146.0964, $C_{10}H_{12}N^+$).

Fig. S27 ¹H NMR spectrum of 3a in CDCl₃.

Fig. S28 ¹³C NMR spectrum of 3a in CDCl₃.

Fig. S29 ¹H NMR spectrum of 3b in CDCl₃.

Fig. S30 ¹³C NMR spectrum of 3b in CDCl₃.

Fig. S31 ¹H NMR spectrum of 3c in CDCl₃.

Fig. S32 ¹³C NMR spectrum of 3c in CDCl₃.

Fig. S33 ¹H NMR spectrum of 3d in CDCl₃.

Fig. S34 ¹H NMR spectrum of 3d in CDCl₃.

Fig. S35 ¹H NMR spectrum of 3e in CDCl₃.

Fig. S36 ¹³C NMR spectrum of 3e in CDCl₃.

Fig. S38 ¹³C NMR spectrum of 3e in CDCl₃.