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Synthesis of SBA-15: SBA-15 was synthesized using tri-block copolymer (P123) as a
soft template. Typically, 2.0 g P123 was dissolved in 60 mL of 2M HCI and 15 ml of
distilled water at 40 <€, and then the mixture was stirred for 1 h. After that, 4.17 mL
of tetraethyl orthosilicate (TEOS) was added. The gel composition P123: HCI: H,O:
TEOS was 0.017: 5.88: 197: 1 in molar ratio. The resulting mixture was further stirred
at 40 <€ for 5 h, and then transferred into a teflon-lined stainless steel autoclave and
aged at 100 <€ for 24 h. After cooling down to room temperature, the products were
filtered, washed with distilled water repeatedly, and dried overnight at 60 <€ in air.
The as-synthesized sample was then pyrolyzed in an air flow at 550 €€ (heating rate 1
< mint) and kept under these conditions for 6 h to remove the copolymer template.
Materials Characterization. The infrared spectra of samples were recorded in
KBr disks using a Nicolet Nexus 870 FT-IR spectrometer. Powder X-ray diffraction
(XRD) patterns of the samples were recorded on a Bruker D8-advance X-ray powder
diffractometer operated at voltage of 40 kV and current of 40 mA with CuK radiation
(L = 1.5406 A). The Raman spectra of samples were recorded with a HORIBA Jobin
Yvon HR800 with a microscope attachment. The laser wavelength of 532 nm was
focused using a diffraction limited spot, and the scan time was 2 s for each sample.
The morphologies of samples were characterized by scanning electron microscope
(SEM, FEI-Quanta 200F) at 15 kV and a transmission electron microscope (TEM,
JEM-2100F) at 200 kV with an energy-dispersive X-ray spectrometry (EDS)
equipment. The TEM images, selected area electron diffractions, high angle annular

dark field scanning transmission electron microscopy (HAADF-STEM), line scanning



and mapping of C, Co and Ni elements were analyzed using a Tecnai G2 F20 S-Twin
high-resolution transmission electron microscope (HRTEM) operating at 200 kV. N2
adsorption/desorption isotherms were obtained by a Kubo X10000 static volumetric
gas adsorption analyzed at -196 <. Before measurements, the samples were
de-gassed at 300 €€ for 3 h in vacuum. The specific surface area was calculated from
the adsorption branches in the relative pressure range of 0.05-0.20 by the
Brunauer-Emmett-Teller (BET) method. The mesopore size distribution was
calculated from desorption branches by the Barret-Joyner-Halenda (BJH) method, and
the single point adsorption total pore volume was taken at the relative pressure of 0.96.
The micropore volume was calculated by t-plot method and the micropore size
distribution was estimated by the Horvath-Kawazoe (H-K) method. The total
reflection X-ray fluorescence (TXRF) was recorded on a Rigaku at 50 kV and 0.60
mA to measure the actual loading of cobalt and nickel. Hydrogen
temperature-programmed reduction (H2-TPR) was performed from room temperature

to 800 €€ using a homemade apparatus equipped with a thermal conductivity detector.
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Figure S1. FT-IR spectra of SBA-15, 0.95% SM-SBA-15, 0.95% MC-SBA-15 and

0.95% CoNi/UMCs.



Figure S2 (a) SEM image of 0.95%CoNi/CMK-3, (b) SEM image of

0.95%CoNi/UMCs-2.



Table S1 The actual mass ratio of Co/C and Ni/C measured by TXRF

characterization.

Samples Co(Ac)2 4H,0? Co/C®  Ni(Ac), 4H,0¢  Ni/CH
(mg) (mg)

UMCs 0 0 0 0
0.11% CoNi/UMCs 16 0.11% 16 0.09%
0.50% CoNi/UMCs 20 0.50% 20 0.55%
0.95% CoNi/UMCs 24 0.95% 24 0.98%
1.04% CoNi/UMCs 32 1.04% 32 1.10%

2The mass of Co(Ac). 4H,0 in the process of synthesis CoNi/UMCs composites;
®The actual mass ratio of Co/C measured by TXRF characterization;
¢The mass of Ni(Ac)2 4H0 in the process of synthesis CoNi/UMCs composites;
4The actual mass ratio of Ni/C measured by TXRF characterization.



Figure S3. SEM images of (a, b) UMCs, (c, d) 0.11% CoNi/UMCs, (e, f) 0.50%

CoNi/UMCs, (g, h) 1.04% CoNi/UMCs.
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Figure S4 SEM images and EDX mapping of (a)(b) 0.11%, (c)(d) 0.50%, (e)(f)
0.95%, (g)(h) 1.04%CoNi/UMCs.
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Figure S5. (a) XRD patterns, (b) H>-TPR profiles of 8.8% CoNi/UMCs.



Table S2 The peak temperatures and H> consumption of CoNi/UMCs composites.

Peak temperatures H2 consumption
Samples
(®) (mmol)
UMCs 648 0.026
0.11% CoNi/UMCs 547 0.016
0.50% CoNi/UMCs 576 0.028
0.95% CoNi/UMCs 590 0.032

1.04% CoNi/UMCs 627 0.029




Table S3 A comparison of as-prepared 0.95% CoNi/UMCs with other ultramicro-,

micro- and mesoporous carbons as electrode materials for EDLCs in aqueous

electrolyte.
Specific capacitance (F g2)
Materials 025 0.50 1.00 10 Ref.
Agt Ag! Ag! Ag?
Ultramicroporous carbon  0.95% CoNi/UMCs 268 251 241 - this work
UCNs - 222 206 156 1
PVFC - 218 194 133 2
UCM-1 - ~ 300 - - 3
UMCN-60 - 411 - 238 4
Microporous carbons C800 ~ 200 - - - 5
NPC 258 - - - 6
Mesoporous carbons CMK-3 - - 210 126 7
FDU-15 - 130 119 100 8
MC-1 - 208 - ~ 170 9

HPC-bdc 170 - - - 10
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Figure S6. Capacitive performance: (a) CV curves at 1 mV st and (b) GCD curves at

0.25A g of 0.95% CoNi/UMCs-2 and 0.95% CoNi/UMCs.
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Figure S7 SEM images of (a) UMCs, (b) 0.11%, (c) 0.50%, (d) 0.95%,

(€)1.04%CoNi/UMCs; and (f) XRD patterns of the composites.
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Figure S8. GCD curves at different current densities of 0.95% CoNi/UMCs.
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Figure S9. Capacitance retention ratios as a function of current densities of

CoNi/UMCs composites in 6 M KOH.
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