Electronic Supplementary Information

Synthesis and characterisation of the vibrational and electrical properties of antiferromagnetic 6L-Ba₂CoTeO₆ ceramics

Anees A. Aziz^{a,b}, Silvana Mercone^c, Ricardo P.S.M. Lobo^{d,e}, Anderson Dias^f, Roberto L. Moreira^g, Anthony M.T. Bell^a, Roger Eccleston^a and A. Feteira^a

^aChristian Doppler Lab in Advanced Ferroic Oxides, Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield, UK.

^bFaculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.

^cLSPM, CNRS UPR 3407, Université Paris Nord, Sorbonne Paris Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France.

^dLPEM, ESPCI Paris, PSL University, CNRS, F-75005 Paris, France.

^eSorbonne Université, CNRS, LPEM, F-75005 Paris, France.

^fDepartamento de Química, ICEx, Universidade Federal de Minas Gerais, 30123-970 Belo Horizonte, Minas Gerais, Brazil.

^gDepartamento de Física, ICEx, Universidade Federal de Minas Gerais, C.P. 702, 30123-970 Belo Horizonte, Minas Gerais, Brazil.

Corresponding author: <u>a.feteira@shu.ac.uk</u>

Rietveld refinements were done using FULLPROF (Rodríguez-Carvajal, J. (1993). Phys. B: Condens. Matter, 192, 55–69.) The 6L-trigonal perovskite structure, space group P-3m (S. A. Ivanov, P. Nordblad, R. Mathieu, R. Tellgren and C. Ritter, Dalton Transactions, 2010, 39, 5490-5499) was used as a starting model for Rietveld refinements.

Colour was measured using a X-rite RM 200 QC colorimeter and reported in CIE LAB coordinates.

Figure S1. Room-temperature XRD data for Ba_2CoTeO_6 powder prepared at 1000 °C.

*Figure S2. SEM micrograph showing the characteristics of the initial Ba*₂*CoTeO*₆ *powder.*

(a) SEI

(b) BEI

Element	Line	Atomic	Standard
	Туре	%	Label
Со	К	23.35	Со
Те	L	23.65	HgTe
Ва	L	53.00	BaF2
Total:		100.00	

Element	Line	Atomic	Standard	
	Туре	%	Label	
Со	К	8.49	Со	
Те	L	22.17	HgTe	
Ва	L	69.34	BaF2	
Total:		100.00		

(c) EDAX spectra from region 1 and 2.

Figure S3. (a)SEI, (b) BEI and (c) EDAX spectra from the two different regions of the as-fired surface of BCTO ceramics fired at 1425 °C.

Figure S4. Z* plot for BCTO ceramics fired at 1350 °C.

Table S1 – Firing schedule for powder synthesis and colour variation in the CIELAB colour space.

Firing	Mixed raw	500°C	700°C	900°C	1000°C
Schedule	materials	(12 h)	(12 h)	(12 h)	2×(24 h)
CIE LAB coordinates					
L*	67.4	63.1	62.1	52.7	50.6
a*	-2.2	-1.3	-1.6	0.4	11.6
b*	-1.3	-0.3	-0.1	-3.4	-26.5
C*	2.5	1.3	1.6	3.5	29
h*	211.5	193.2	181.9	276.9	293.6

La	attice parameters (Å)	Volume	R	factors	(%)
а	b	с	(Å ³)	R_{wp}	R_p	χ^2
5.79870(3)	5.79870(3)	14.26599(9)	415.426(4)	26.5	19.1	21.87
	Х	У	Z	Uiso)	Occ.
Ba(1)	0.00000	0.00000	0.2480(6)	0.0239(17)	1.00000
Ba(2)	0.33330	0.66670	0.0895(4)	0.024(2)	1.00000
Ba(3)	0.33330	0.66670	0.4005(4)	0.035(2)	1.00000
Co(1)	0.00000	0.00000	0.00000	0.030(8)	1.00000
Co(2)	0.33330	0.66670	0.6403(11)	0.036(5)	1.00000
Te(1)	0.00000	0.00000	0.50000	0.015((3)	1.00000
Te(2)	0.33330	0.66670	0.8381(4)	0.0155(17)	1.00000
O(1)	0.5021(18)	0.4979(18)	0.239(2)	0.011(6)	1.00000
O(2)	0.818(2)	0.182(2)	0.0754(17)	0.018(9)	1.00000
O(3)	0.848(3)	0.152(3)	0.4168(13)	0.009(8)	1.00000

Table S2 – Refined Structural Parameters for BCTO. (Space group $P\overline{3}m1$)

Table S3 – Dependence of the relative density (%) in function of the firing temperature.

Firing temperature (°C)	Relative density (%)
1300	64
1350	87
1400	90
1425	80

Table S4 – Normal vibrational modes of BCTO at the Brillouin zone center (Γ -point), within the **P3m1**, (#164 or **D**³_{3d}) hexagonal space group, with Z_u (= Z_p) = 3 (three motifs per unit or primitive cells).

Ion	Wyckoff	Site Irreducible	
1011	site ¹	symmetry	representations
$Ba^{2+}(1)$	2c	C_{3v}	$A_{1g} \oplus A_{2u} \oplus E_g \oplus E_u$
Ba ²⁺ (2)	2d	C_{3v}	$A_{1g} \oplus A_{2u} \oplus E_g \oplus E_u$
Ba ²⁺ (3)	2d	C_{3v}	$A_{1g} \oplus A_{2u} \oplus E_g \oplus E_u$
Co ²⁺ (1)	1a	D_{3d}	$A_{2u}\oplus E_u$
$Co^{2+}(2)$	2d	C_{3v}	$A_{1g} \oplus A_{2u} \oplus E_g \oplus E_u$
$Te^{6+}(1)$	1b	D_{3d}	$A_{2u}\oplus E_u$
$Te^{6+}(2)$	2d	C_{3v}	$A_{1g} \oplus A_{2u} \oplus E_g \oplus E_u$
O ²⁻ (1)	6i	Cs	$2A_{1g} \oplus A_{1u} \oplus A_{2g} \oplus$
			$2A_{2u}\oplus 3E_g\oplus 3E_u$
O ²⁻ (2)	6i	Cs	$2A_{1g} \oplus A_{1u} \oplus A_{2g} \oplus$
			$2A_{2u}\oplus 3E_g\oplus 3E_u$
O ²⁻ (3)	6i	Cs	$2A_{1g} \oplus A_{1u} \oplus A_{2g} \oplus$
			$2A_{2u}\oplus 3E_g\oplus 3E_u$
			$\Gamma_{\text{acoustic}} = \mathbf{A}_{2\mathbf{u}} \oplus \mathbf{E}_{\mathbf{u}}$
			$\Gamma_{\rm IR} = 12 A_{2u} \oplus 15 E_u$
			$\Gamma_{\text{Raman}} = 11 A_{1g} \oplus 14 E_{g}$
			(Silent: $3A_{1u} \oplus 3A_{2g}$)