Supporting Information

Unbridged Rh(II)-Rh(II) Complexes of \boldsymbol{N}-Heterocyclic Carbene and Reactions with O_{2} to Dirhodium $\left(\mu-\boldsymbol{\eta}^{\mathbf{1}}: \boldsymbol{\eta}^{\mathbf{1}}\right)$-Peroxide Complexes

Xiaofei Yi, ${ }^{a}$ Bin Liu, ${ }^{\text {b }}$ Kai Chen, ${ }^{a}$ Wei Chen ${ }^{a}$ and Wanzhi Chen *a

a. Department of Chemistry, Zhejiang University, Hangzhou 310007, China. chenwzz@zju.edu.cn.
b. Zhejiang Province Key Laboratory of Noble Metal Catalytic Materials and Technology, Hangzhou, 310011, China.

Experimental Section

All the chemicals were obtained from commercial suppliers and used without further purification. 2(Imidazolyl)pyridine and $\left[\mathrm{H}_{2} \mathrm{~L}\right]\left(\mathrm{PF}_{6}\right)_{2}$ were prepared according to known procedures. ${ }^{1}$ Elemental analyses were performed on a Flash EA1112 instrument. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance-400 (400 MHz) spectrometer. Chemical shifts (δ) are expressed in ppm downfield from TMS at $\delta=0 \mathrm{ppm}$, and coupling constants (J) are expressed in Hz.

Synthesis of $[\mathbf{R h}(\mathbf{L})(\mathbf{M e C N})]_{2}\left(\mathbf{P F}_{6}\right)_{4}$, 1. A solution of $\left[\mathrm{H}_{2} \mathrm{~L}\right]\left(\mathrm{PF}_{6}\right)_{2}(446 \mathrm{mg}, 0.75 \mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was treated with $\mathrm{Ag}_{2} \mathrm{O}(180 \mathrm{mg}, 0.75 \mathrm{mmol})$. The mixture was allowed to react in the dark at $50^{\circ} \mathrm{C}$ for 12 h , and the reaction solution was treated with $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(370 \mathrm{mg}, 0.75 \mathrm{mmol})$. After it was stirred for 12 hours at $50^{\circ} \mathrm{C}$, the solution was filtered. The filtrate was concentrated to ca .10 mL . Addition of 40 mL of diethyl ether gave a yellow solid. Yield: 83%. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~F}_{24} \mathrm{~N}_{14} \mathrm{P}_{4} \mathrm{Rh}_{2}$: C, 31.00; H, 2.33; N, 13.32. Found: C, 31.23; H, 2.65; N, 13.64. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}) $\delta: 9.08$ (d, $J=4.8 \mathrm{~Hz}, o-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}$), 8.47 (dt, $J=7.6$ and $\left.1.6 \mathrm{~Hz}, p-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}\right), 8.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{NCHCHN}$, $4 \mathrm{H}), 8.15\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, m-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}\right), 8.01(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{NCHCHN}, 4 \mathrm{H}), 7.70(\mathrm{dt}, J=7.6$ and 1.6 $\left.\mathrm{Hz}, m-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}\right), 7.12\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{~N}, 2 \mathrm{H}\right), 6.95\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{~N}, 2 \mathrm{H}\right), 2.08(\mathrm{~s}$, $\left.\mathrm{CH}_{3} \mathrm{CN}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , dmso- d_{6}) $\delta: 169.4\left(\mathrm{~d}, J_{\mathrm{RhC}}=45 \mathrm{~Hz}\right.$), 151.1, 147.7, 141.8, 124.0, 123.5, 118.4, 117.0, 112.8, 64.2. Single crystals of 1 suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into its acetonitrile solution.

Synthesis of $[\mathbf{R h}(\mathbf{L})(\mathbf{N M I})]_{2}\left(\mathbf{P F}_{6}\right)_{4}, \mathbf{2}$. A solution of $[\mathrm{Rh}(\mathrm{L})(\mathrm{MeCN})]_{2}\left(\mathrm{PF}_{6}\right)_{4}(466 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 0.5 mL of N -methylimidazole in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was stirred for 12 hours at room temperature. The solution was filtered, and the filtrate was concentrated to $c a .5 \mathrm{~mL}$. Orange crystalline solid was
collected after addition of diethyl ether. Yield: 85%. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~F}_{24} \mathrm{~N}_{16} \mathrm{P}_{4} \mathrm{Rh}_{2}$: C, 32.45; H, 2.59; N, 14.42. Found: C, 32.58; H, 2.71; N, 14.54. ${ }^{1} \mathrm{H}$ NMR (dmso- d_{6}): 9.08 (d, $J=4.8 \mathrm{~Hz}, o-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$, $4 \mathrm{H}), 8.31\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, p-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}\right), 8.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, \mathrm{NCHCHN}, 4 \mathrm{H}), 7.98\left(\mathrm{br}, m-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} 4 \mathrm{H}\right)$, 7.97 (br, NCHCHN, 4H), 7.63 (t, $J=7.6 \mathrm{~Hz}, m-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}$), 7.14 (d, $J=14.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{~N}, 2 \mathrm{H}$), 6.71 (s, NCHN, 2H), 6.59 (d, $J_{\mathrm{HH}}=14.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{~N}, 2 \mathrm{H}$), 6.49 (br, NCHCHN, 2H), 5.70 (br, NCHCHN, $2 \mathrm{H}), 3.14\left(\mathrm{~s}, \mathrm{NCH}_{3}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (dmso- $\left.d_{6}\right): 176.2\left(\mathrm{~d}, J_{\mathrm{RhC}}=45 \mathrm{~Hz}\right), 151.3,148.6,142.0,136.4$, $124.8,124.5,124.2,122.4,118.5,113.0,65.1,33.8$.

Synthesis of $\left[\mathbf{R h O}(\mathrm{L})\left(\mathbf{P P h}_{3}\right)\right]_{2}\left(\mathbf{P F}_{6}\right)_{4}, \mathbf{3}$ and $\left[\mathbf{R h O}(\mathrm{L})\left(\mathbf{C H}_{3} \mathbf{C N}\right)\right]_{2}\left(\mathbf{P F}_{6}\right)_{4}, 4$. Method 1: A solution of $\left[\mathrm{H}_{2} \mathrm{~L}\right]\left(\mathrm{PF}_{6}\right)_{2}(446 \mathrm{mg}, 0.75 \mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was treated with $\mathrm{Ag}_{2} \mathrm{O}(180 \mathrm{mg}, 0.75 \mathrm{mmol})$. The mixture was allowed to react in the dark at $50^{\circ} \mathrm{C}$ for 12 hours, and the reaction solution was added $\operatorname{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(370 \mathrm{mg}, 0.75 \mathrm{mmol})$. After the mixture was stirred for another 12 hours at $50{ }^{\circ} \mathrm{C}$, the solution was filtered. The filtrate was concentrated to $c a .10 \mathrm{~mL}$. Addition of 40 mL of diethyl ether gave a brown solid. Yield: 51%. Method 2: A solution of $[\mathrm{Rh}(\mathrm{L})(\mathrm{MeCN})]_{2}\left(\mathrm{PF}_{6}\right)_{4} \mathbf{1}(466 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was stirred for 12 hours at $50^{\circ} \mathrm{C}$. The filtrate was concentrated to $c a .5 \mathrm{~mL}$. Addition of 20 mL of diethyl ether gave a brown solid. Yield: 72\%. Single crystals of $\mathbf{3}$ suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into its acetonitrile solution. Simultaneously, a few yellow needlelike crystals assigned to $\left[\mathrm{RhO}(\mathrm{L})\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]_{2}\left(\mathrm{PF}_{6}\right)_{4} 4$ were obtained.
$\left[\mathrm{RhO}(\mathrm{L})\left(\mathrm{PPh}_{3}\right)\right]_{2}\left(\mathrm{PF}_{6}\right)_{4}, \mathbf{3}$, Anal. Calcd for $\mathrm{C}_{70} \mathrm{H}_{58} \mathrm{~F}_{24} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{P}_{6} \mathrm{Rh}_{2}$: C, 43.18; H, 3.00; N, 8.63. Found: C,43.73; H, 3.32; N, 8.78. ${ }^{1} \mathrm{H}$ NMR (400 MHz , dmso- d_{6}): 8.83 (d, $J=5.6 \mathrm{~Hz}, o-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}$), 8.18 (m , $p-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}, 8 \mathrm{H}\right), 7.74\left(\mathrm{~m}, \mathrm{NCHCHN}, \mathrm{C}_{6} \mathrm{H}_{5}, 8 \mathrm{H}\right), 7.41\left(\mathrm{~m}, m-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}, 10 \mathrm{H}\right), 7.21(\mathrm{~m}$, NCHCHN and $\left.\mathrm{C}_{6} \mathrm{H}_{5}, 12 \mathrm{H}\right), 6.53\left(\mathrm{~m}, p-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}, 12 \mathrm{H}\right), 6.25\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{~N}, 2 \mathrm{H}\right), 5.44$ (d, $J=13.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{~N}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{dmso}-d_{6}$): 170.0 (dd, $J_{\mathrm{CRh}}=43.0 \mathrm{~Hz}, J_{\mathrm{CP}}=11.2$ $\mathrm{Hz}), 151.0,148.6,142.2,131.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=10.4 \mathrm{~Hz}\right), 131.5,129.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9.9 \mathrm{~Hz}\right), 126.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=47\right.$ $\mathrm{Hz})$, 124.0, 123.6, 118.3, 113.0, 63.8. ${ }^{31} \mathrm{P}$ NMR (162 MHz , dmso- d_{6}) : $19.9\left(\mathrm{~d}, J_{\mathrm{RhP}}=92 \mathrm{~Hz}\right.$), -144.1 (sep, $J_{\mathrm{PF}}=712 \mathrm{~Hz}$).

Synthesis of $\left[\mathbf{R h O}(\mathbf{L})\left(\mathbf{P C y}_{3}\right)\right]_{\mathbf{2}}\left(\mathbf{P F}_{6}\right)_{4}, \mathbf{5}$. A solution of $[\mathrm{Rh}(\mathrm{L})(\mathrm{MeCN})]_{2}\left(\mathrm{PF}_{6}\right)_{4}(466 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathrm{PCy}_{3}(168 \mathrm{mg}, 0.6 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was stirred for 12 hours at $50^{\circ} \mathrm{C}$. The solution was filtered, and the filtrate was concentrated to $c a .5 \mathrm{~mL}$. Addition of 20 mL of diethyl ether gave a brown solid. Yield: 65%. Anal. Calcd for $\mathrm{C}_{70} \mathrm{H}_{94} \mathrm{~F}_{24} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{P}_{6} \mathrm{Rh}_{2}$: C, $42.39 ; \mathrm{H}, 4.78 ; \mathrm{N}, 8.48$. Found: C, 42.56; H, 4.92; N, 8.79. ${ }^{1} \mathrm{H}$ NMR (dmso- d_{6}): 8.72 (d, $J=4.8 \mathrm{~Hz}, o-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}$), 8.45 (dt, $J=7.6 \mathrm{~Hz}$ and1.6 $\left.\mathrm{Hz}, p-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}\right), 8.29(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{NCHCHN}, 4 \mathrm{H}), 8.10\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, m-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}\right), 7.86(\mathrm{~d}, J=$
$2.4 \mathrm{~Hz}, \mathrm{NCHCHN}, 4 \mathrm{H}$), $7.66\left(\mathrm{dt}, J=7.6 \mathrm{~Hz}\right.$ and $\left.1.6 \mathrm{~Hz}, m-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}\right), 6.68\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{~N}\right.$, $2 \mathrm{H}), 6.37\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{~N}, 2 \mathrm{H}\right), 1.45\left(\mathrm{~m}, \mathrm{CH}_{2}, 18 \mathrm{H}\right), 1.04\left(\mathrm{~m}, \mathrm{CH}_{2}, 18 \mathrm{H}\right), 0.83\left(\mathrm{~m}, \mathrm{CH}_{2}, 18 \mathrm{H}\right)$, $0.56(\mathrm{~m}, \mathrm{CH}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (dmso- d_{6}): $169.8\left(\mathrm{dd}, J_{\mathrm{CRh}}=43.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=10.6 \mathrm{~Hz}\right), 150.3,148.1,141.9$, 123.3, 122.9, 117.2, 117.0, 112.1, 63.8, 63.1, $34.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=17.6 \mathrm{~Hz}\right), 27.0,25.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right)$, 24.1. ${ }^{31} \mathrm{P}$ NMR (162 MHz, dmso- d_{6}) : $29.7\left(\mathrm{~d}, J_{\mathrm{PRh}}=90 \mathrm{~Hz}\right.$), $-144.2\left(\mathrm{sep}, J_{\mathrm{PF}}=712 \mathrm{~Hz}\right)$.

X-ray Structural Determination. Single-crystal X-ray diffraction data were collected at 293(2) K for 1, 2, 4 and 5 and 150 K for $\mathbf{3}$ on a Siemens Smart/CCD area-detector diffractometer with a Mo K α radiation ($\lambda=0.71073 \AA$) by using the $\omega-2 \theta$ scan mode. Unit-cell dimensions were obtained with leastsquares refinement. Data collection and reduction were performed using the SMART and SAINT software. The structures were solved by direct methods, and the non-hydrogen atoms were subjected to anisotropic refinement by full-matrix least-squares on F^{2} using the SHELXTXL package. Hydrogen atom positions for all of the structures were calculated and allowed to ride on their respective C atoms with C-H distances of $0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=-1.2-1.5 U_{\mathrm{eq}}(\mathrm{C})$.

Table S1. Summary of X-ray crystallographic data for complexes 1-5.

compound	1	2	3	4	5
CCDC No.	1883809	1883810	1883811	1883813	1883812
formula	$[\mathrm{Rh}(\mathrm{L})(\mathrm{MeCN})]_{2}($	$[\mathrm{Rh}(\mathrm{L})(\mathrm{NMI})]_{2}\left(\mathrm{PF}_{6}\right)_{4}$	$\left[\mathrm{RhO}(\mathrm{L})\left(\mathrm{PPh}_{3}\right)\right]_{2}(\mathrm{PF}$	$\left[\mathrm{RhO}(\mathrm{L})\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]_{2}($	$\left[\mathrm{RhO}(\mathrm{L})\left(\mathrm{PCy}_{3}\right)\right]_{2}\left(\mathrm{PF}_{6}\right)_{4}$.
	$\left.\mathrm{PF}_{6}\right)_{4} \cdot 2 \mathrm{MeCN}$	$\cdot 3 \mathrm{MeCN} \cdot \mathrm{Et}_{2} \mathrm{O}$	6) $4 \cdot 4 \mathrm{MeCN}$	$\left.\mathrm{PF}_{6}\right)_{4} \cdot 2 \mathrm{MeCN}$	$2 \mathrm{MeCN} \cdot \mathrm{Et}_{2} \mathrm{O}$
$F w$.	1554.60	1751.88	2111.14	1586.60	2139.44
crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic	Triclinic
space group	$P-1$	$P 2 / \mathrm{l}$ n	$P 2{ }_{1} / \mathrm{n}$	$P-1$	$P-1$
a / \AA ¢	10.7295(8)	19.0638(6)	14.0615(4)	11.146(3)	13.1037(15)
b / \AA	12.2235(6)	15.4706(5)	12.6084(3)	12.035(3)	14.8822(17)
c / \AA	$12.5730(7)$	26.2772(9)	24.0897(7)	12.880(3)	15.3583(11)
α / deg	79.434(4)	90	90	$79.125(18)$	104.336(8)
$\beta /$ deg	73.363(5)	103.647(3)	95.831(3)	69.88(2)	111.184(9)

$\gamma /$ deg	65.209(6)	90	90	65.98(2)	106.435(10)
V / \AA^{3}	1430.54(15)	7531.1(4)	4248.8(2)	1479.4(6)	2465.1(5)
Z	1	4	2	1	1
$D / \mathrm{g} \mathrm{cm}^{-3}$	1.805	1.545	1.650	1.781	1.441
reflns	5027	17813	7469	5190	8675
collected					
ind reflns, $R_{\text {int }}$	4298	12406	6170	3887	7158
goodness-of-	1.055	1.034	1.032	1.013	1.056
fit on F^{2}					
R1, wR2 [I>	0.0519, 0.1294	0.0710, 0.1860	$0.0516,0.1206$	0.0630, 0.1426	0.0512, 0.1214
$2 \sigma(1)]$					
R1, wR2 (all	0.0635, 0.1424	0.1063, 0.2198	$0.0659,0.1327$	0.0895, 0.1652	0.0659, 0.1456

Reference

1. Z. Xi, X. Zhang, W. Chen, S. Fu, D. Wang, Organometallics, 2007, 26, 6636.
