Supporting Information

Unbridged Rh(II)-Rh(II) Complexes of N-Heterocyclic Carbene and Reactions with

O₂ to Dirhodium(μ - η^1 : η^1)-Peroxide Complexes

Xiaofei Yi, ^a Bin Liu, ^b Kai Chen, ^a Wei Chen ^a and Wanzhi Chen ^{*a}

^{*a.*} Department of Chemistry, Zhejiang University, Hangzhou 310007, China. chenwzz@zju.edu.cn.

^{b.} Zhejiang Province Key Laboratory of Noble Metal Catalytic Materials and Technology, Hangzhou, 310011, China.

Experimental Section

All the chemicals were obtained from commercial suppliers and used without further purification. 2-(Imidazolyl)pyridine and $[H_2L](PF_6)_2$ were prepared according to known procedures.¹ Elemental analyses were performed on a Flash EA1112 instrument. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-400 (400 MHz) spectrometer. Chemical shifts (δ) are expressed in ppm downfield from TMS at $\delta = 0$ ppm, and coupling constants (*J*) are expressed in Hz.

Synthesis of [Rh(L)(MeCN)]₂(PF₆)₄, 1. A solution of [H₂L](PF₆)₂ (446 mg, 0.75 mmol) in 50 mL of CH₃CN was treated with Ag₂O (180 mg, 0.75 mmol). The mixture was allowed to react in the dark at 50 °C for 12 h, and the reaction solution was treated with [Rh(cod)Cl]₂ (370 mg, 0.75 mmol). After it was stirred for 12 hours at 50 °C, the solution was filtered. The filtrate was concentrated to *ca*. 10 mL. Addition of 40 mL of diethyl ether gave a yellow solid. Yield: 83%. Anal. Calcd for C₃₈H₃₄F₂₄N₁₄P₄Rh₂: C, 31.00; H, 2.33; N, 13.32. Found: C, 31.23; H, 2.65; N, 13.64. ¹H NMR (400 MHz, dmso-*d*₆) δ : 9.08 (d, *J* = 4.8 Hz, *o*-C₅H₄N, 4H), 8.47 (dt, *J* = 7.6 and 1.6 Hz, *p*-C₅H₄N, 4H), 8.34 (d, *J* = 2.4 Hz, NCHCHN, 4H), 8.15 (d, *J* = 8.4 Hz, *m*-C₅H₄N, 4H), 8.01 (d, *J* = 2.4 Hz, NCHCHN, 4H), 7.70 (dt, *J* = 7.6 and 1.6 Hz, *m*-C₅H₄N, 4H), 7.12 (d, *J* = 13.6 Hz, NCH₂N, 2H), 6.95 (d, *J* = 13.6 Hz, NCH₂N, 2H), 2.08 (s, CH₃CN, 6H). ¹³C NMR (100 MHz, dmso-*d*₆) δ : 169.4 (d, *J*_{RhC} = 45 Hz), 151.1, 147.7, 141.8, 124.0, 123.5, 118.4, 117.0, 112.8, 64.2. Single crystals of **1** suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into its acetonitrile solution.

Synthesis of $[Rh(L)(NMI)]_2(PF_6)_4$, 2. A solution of $[Rh(L)(MeCN)]_2(PF_6)_4$ (466 mg, 0.3mmol) and 0.5 mL of *N*-methylimidazole in 20 mL of CH₃CN was stirred for 12 hours at room temperature. The solution was filtered, and the filtrate was concentrated to *ca*. 5 mL. Orange crystalline solid was

collected after addition of diethyl ether. Yield: 85%. Anal. Calcd for $C_{42}H_{40}F_{24}N_{16}P_4Rh_2$: C, 32.45; H, 2.59; N, 14.42. Found: C, 32.58; H, 2.71; N, 14.54. ¹H NMR (dmso-*d*₆): 9.08 (d, *J* = 4.8 Hz, *o*-C₅H₄N, 4H), 8.31 (t, *J* = 7.6 Hz, *p*-C₅H₄N, 4H), 8.26 (d, *J* = 1.6 Hz, NCHCHN, 4H), 7.98 (br, *m*-C₅H₄N 4H), 7.97 (br, NCHCHN, 4H), 7.63 (t, *J* = 7.6 Hz, *m*-C₅H₄N, 4H), 7.14 (d, *J* = 14.0 Hz, NCH₂N, 2H), 6.71 (s, NCHN, 2H), 6.59 (d, *J*_{HH} = 14.0 Hz, NCH₂N, 2H), 6.49 (br, NCHCHN, 2H), 5.70 (br, NCHCHN, 2H), 3.14 (s, NCH₃, 6H). ¹³C NMR (dmso-*d*₆): 176.2 (d, *J*_{RhC} = 45 Hz), 151.3, 148.6, 142.0, 136.4, 124.8, 124.5, 124.2, 122.4, 118.5, 113.0, 65.1, 33.8.

Synthesis of $[RhO(L)(PPh_3)]_2(PF_6)_4$, 3 and $[RhO(L)(CH_3CN)]_2(PF_6)_4$, 4. Method 1: A solution of $[H_2L](PF_6)_2$ (446 mg, 0.75 mmol) in 50 mL of CH₃CN was treated with Ag₂O (180 mg, 0.75 mmol). The mixture was allowed to react in the dark at 50 °C for 12 hours, and the reaction solution was added RhCl(PPh_3)_3 (370 mg, 0.75 mmol). After the mixture was stirred for another12 hours at 50 °C, the solution was filtered. The filtrate was concentrated to *ca*. 10 mL. Addition of 40 mL of diethyl ether gave a brown solid. Yield: 51%. Method 2: A solution of $[Rh(L)(MeCN)]_2(PF_6)_4$ 1 (466 mg, 0.3 mmol) and PPh₃ (157 mg, 0.6 mmol) in 20 mL of CH₃CN was stirred for 12 hours at 50 °C. The filtrate was concentrated to *ca*. 5 mL. Addition of 20 mL of diethyl ether gave a brown solid. Yield: 72%. Single crystals of 3 suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into its acetonitrile solution. Simultaneously, a few yellow needlelike crystals assigned to [RhO(L)(CH₃CN)]₂(PF₆)₄ 4 were obtained.

[RhO(L)(PPh₃)]₂(PF₆)₄, **3**, Anal. Calcd for C₇₀H₅₈F₂₄N₁₂O₂P₆Rh₂: C, 43.18; H, 3.00; N, 8.63. Found: C,43.73; H, 3.32; N, 8.78. ¹H NMR (400 MHz, dmso-*d*₆): 8.83 (d, J = 5.6 Hz, o-C₅H₄N, 4H), 8.18 (m, p-C₅H₄N and C₆H₅, 8H), 7.74 (m, NCHC*H*N, C₆H₅, 8H), 7.41 (m, m-C₅H₄N and C₆H₅, 10H), 7.21 (m, NC*H*CHN and C₆H₅, 12H), 6.53 (m, p-C₅H₄N and C₆H₅, 12H), 6.25 (d, J = 13.6 Hz, NCH₂N, 2H), 5.44 (d, J = 13.6 Hz, NCH₂N, 2H). ¹³C NMR (100 MHz, dmso-*d*₆): 170.0 (dd, $J_{CRh} = 43.0$ Hz, $J_{CP} = 11.2$ Hz), 151.0, 148.6, 142.2, 131.7 (d, ² $J_{CP} = 10.4$ Hz), 131.5, 129.2 (d, ² $J_{CP} = 9.9$ Hz), 126.8 (d, ¹ $J_{CP} = 47$ Hz), 124.0, 123.6, 118.3, 113.0, 63.8. ³¹P NMR (162 MHz, dmso-*d*₆) : 19.9 (d, $J_{RhP} = 92$ Hz), -144.1 (sep, $J_{PF} = 712$ Hz).

Synthesis of [RhO(L)(PCy₃)]₂(PF₆)₄, 5. A solution of [Rh(L)(MeCN)]₂(PF₆)₄ (466 mg, 0.3mmol) and PCy₃ (168 mg, 0.6 mmol) in 20 mL of CH₃CN was stirred for 12 hours at 50 °C. The solution was filtered, and the filtrate was concentrated to *ca*. 5 mL. Addition of 20 mL of diethyl ether gave a brown solid. Yield: 65%. Anal. Calcd for $C_{70}H_{94}F_{24}N_{12}O_2P_6Rh_2$: C, 42.39; H, 4.78; N, 8.48. Found: C, 42.56; H, 4.92; N, 8.79. ¹H NMR (dmso-*d*₆): 8.72 (d, *J* = 4.8 Hz, *o*-C₅H₄N, 4H), 8.45 (dt, *J* = 7.6 Hz and 1.6 Hz, *p*-C₅H₄N, 4H), 8.29 (d, *J* = 2.4 Hz, NC*H*CHN, 4H), 8.10 (d, *J* = 8.4 Hz, *m*-C₅H₄N, 4H), 7.86 (d, *J* =

2.4 Hz, NCHCHN, 4H), 7.66 (dt, J = 7.6 Hz and 1.6 Hz, m-C₅H₄N, 4H), 6.68 (d, J = 14.0 Hz, NCH₂N, 2H), 6.37 (d, J = 14.0 Hz, NCH₂N, 2H), 1.45 (m, CH₂, 18H), 1.04 (m, CH₂, 18H), 0.83 (m, CH₂, 18H), 0.56 (m, CH, 12H). ¹³C NMR (dmso- d_6): 169.8 (dd, $J_{CRh} = 43.0$ Hz, ${}^2J_{CP} = 10.6$ Hz), 150.3, 148.1, 141.9, 123.3, 122.9, 117.2, 117.0, 112.1, 63.8, 63.1, 34.3 (d, ${}^1J_{CP} = 17.6$ Hz), 27.0, 25.6 (d, ${}^2J_{CP} = 9.3$ Hz), 24.1. ³¹P NMR (162 MHz, dmso- d_6) : 29.7 (d, $J_{PRh} = 90$ Hz), -144.2 (sep, $J_{PF} = 712$ Hz).

X-ray Structural Determination. Single-crystal X-ray diffraction data were collected at 293(2) K for **1**, **2**, **4** and **5** and 150 K for **3** on a Siemens Smart/CCD area-detector diffractometer with a Mo K α radiation ($\lambda = 0.71073$ Å) by using the ω -2 θ scan mode. Unit-cell dimensions were obtained with least-squares refinement. Data collection and reduction were performed using the SMART and SAINT software. The structures were solved by direct methods, and the non-hydrogen atoms were subjected to anisotropic refinement by full-matrix least-squares on F^2 using the SHELXTXL package. Hydrogen atom positions for all of the structures were calculated and allowed to ride on their respective C atoms with C-H distances of 0.93–0.97 Å and $U_{iso}(H) = -1.2 - 1.5U_{eq}(C)$.

compound	1	2	3	4	5
CCDC No.	1883809	1883810	1883811	1883813	1883812
formula	[Rh(L)(MeCN)] ₂ ([Rh(L)(NMI)] ₂ (PF ₆) ₄	[RhO(L)(PPh ₃)] ₂ (PF	[RhO(L)(CH ₃ CN)] ₂ ($[RhO(L)(PCy_3)]_2(PF_6)_4$
	PF ₆) ₄ ·2MeCN	3MeCN Et ₂ O	₆) ₄ :4MeCN	PF ₆) ₄ ·2MeCN	2MeCN Et ₂ O
Fw.	1554.60	1751.88	2111.14	1586.60	2139.44
crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic	Triclinic
space group	<i>P</i> -1	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /n	<i>P</i> -1	<i>P</i> -1
a/Å	10.7295(8)	19.0638(6)	14.0615(4)	11.146(3)	13.1037(15)
<i>b</i> /Å	12.2235(6)	15.4706(5)	12.6084(3)	12.035(3)	14.8822(17)
c/Å	12.5730(7)	26.2772(9)	24.0897(7)	12.880(3)	15.3583(11)
α/deg	79.434(4)	90	90	79.125(18)	104.336(8)
β/deg	73.363(5)	103.647(3)	95.831(3)	69.88(2)	111.184(9)

Table S1. Summary of X-ray crystallographic data for complexes 1-5.

γ/deg	65.209(6)	90	90	65.98(2)	106.435(10)
V/Å ³	1430.54(15)	7531.1(4)	4248.8(2)	1479.4(6)	2465.1(5)
Ζ	1	4	2	1	1
$D/g \text{ cm}^{-3}$	1.805	1.545	1.650	1.781	1.441
reflns	5027	17813	7469	5190	8675
collected					
ind reflns, $R_{\rm int}$	4298	12406	6170	3887	7158
goodness-of-	1.055	1.034	1.032	1.013	1.056
fit on F^2					
R1, wR2 [I > 2σ(I)]	0.0519, 0.1294	0.0710, 0.1860	0.0516, 0.1206	0.0630, 0.1426	0.0512, 0.1214
R1, wR2 (all data)	0.0635, 0.1424	0.1063, 0.2198	0.0659, 0.1327	0.0895, 0.1652	0.0659, 0.1456

Reference

1. Z. Xi, X. Zhang, W. Chen, S. Fu, D. Wang, Organometallics, 2007, 26, 6636.