Electronic Supplementary Information (ESI)

A Molecular Noble Metal-Free System for Efficient Visible Light-Driven Reduction of CO₂ to CO

Lingjing Chen,^a Yanfei Qin,^a Gui Chen,^{*a} Mingya Li,^a Lirong Cai,^a Yongfu Qiu,^a Hongbo

Fan,^a Marc Robert*c and Tai-Chu Lau*b

^a School of Environment and Civil Engineering, Dongguan University of Technology, Guangdong, 523808, China.

Email: <u>chengui@dgut.edu.cn</u>

^b Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.

Email: <u>bhtclau@cityu.edu.hk</u>.

^c Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France.

Email: robert@univ-paris-diderot.fr

Scheme, Figures and Tables

Scheme S1 Structures of photosensitizer (purpurin) and sacrificial reductant (BIH)4
Figure S1 ESI/MS spectrum of 1 in MeCN
Figure S2 UV-vis spectra of 0.1 mM solution of 1 in DMF
Figure S3 (a) Cyclic voltammogram of 1 (1 mM) and dqtpy ligand (0.1 mM) in MeCN solution
under Ar. (b) Cyclic voltammogram of 1 mM 1 in 0.1 M ${}^{n}Bu_{4}NPF_{6}$ in MeCN under Ar and CO ₂
atmosphere (1 atm), and in the absence and presence of TFE
Figure S4 Cyclic voltammogram of 1 mM 2 in 0.1 M ⁿ Bu ₄ NPF ₆ in MeCN under Ar and CO ₂
atmosphere (1 atm), and in the absence and presence of TFE7
Figure S5 Cyclic voltammogram of 1 mM 3 in 0.1 M ${}^{n}Bu_4NPF_6$ in MeCN under Ar and CO ₂
atmosphere (1 atm), and in the absence and presence of TFE7
Figure S6 (a) Cyclic voltammogram of 1 (1 mM) and dqtpy ligand (1 mM) in 0.1 M $^{n}Bu_{4}NPF_{6}$ in
DMF solution under Ar. (b) Cyclic voltammogram of 1 mM 1 in 0.1 M ${}^{n}Bu_{4}NPF_{6}$ in DMF under
Ar and CO ₂ atmosphere (1 atm), and in the absence and presence of TFE
Figure S7 De-convoluted gas chromatograms of gaseous products in the headspace of sample
flask. Sample solution: 0.05 mM 1, 0.05 mM purpurin, 0.1 M BIH and 5% TFE in $^{13}\mathrm{CO}_2\text{-saturated}$
DMF. The peak at m/z 29 is assigned to ¹³ CO. Only a minor peak at m/z 28 was observed due to
N_2 from residual air (O_2 and N_2 were observed by GC-TCD)
Figure S8 Stability tests of 1/purpurin/BIH/TFE/DMF system during light irradiation. Plot of CO
versus time for the first cycle (\blacksquare) and second cycle with re-bubbling of CO ₂ and the addition of
another equiv. of 1 (•) and purpurin (\blacktriangle). The solution contains initially 0.05 mM 1, 0.05 mM
purpurin, 0.1 M BIH and 5% TFE9
Figure S9 Particle size distribution of a CO ₂ -saturated DMF solution containing 0.05 mM 1, 0.05
mM purpurin, 0.1 M BIH and 5% TFE determined by dynamic light scattering (DLS)
measurements during irradiation from 0 to 15 h10
Figure S10 Comparison of the photocatalytic CO ₂ reduction performance with and without Hg(0)
(0.1 mL) in a DMF solution that containing 0.05 mM 1, 0.05 mM purpurin, 0.1 M BIH and 5%
TFE. The TON for CO did not decrease when Hg(0) is added10

Figure S11 Stern-Volmer plot of the lifetime quenching of purpurin (0.05 mM) by BIH in DMF.

Figure S12 Absorbance change at 398 nm as a function of time in a CO ₂ -saturated DMF solution
containing 0.05 mM purpurin, 0.1 M BIH and 5% TFE during irradiation in the absence (black)
and presence of 0.05 mM 1 (red)11
Figure S13 UV-Vis spectral of the solution (a CO ₂ -saturated DMF solution containing 0.05 mM
Fe(ClO ₄) ₂ , 0.05 mM purpurin, 0.1 M BIH and 5% TFE) during irradiation12

Table S1 I	Experiment details of X-ray crystallography of [Fe(dqtpy)(CH ₃ CN)](ClO ₄) ₂ 13
Table S2 S	Selected bond lengths (Å) and angels (°) of [Fe(dqtpy)(CH ₃ CN)](ClO ₄) ₂ 13
Table S3 I	Experiment details of X-ray crystallography of [Co(dqtpy)(CH ₃ CN)](ClO ₄) ₂ 14
Table S4 S	Selected bond lengths (Å) and angels (°) of [Co(dqtpy)(CH ₃ CN)](ClO ₄) ₂ 14
Table S5 I	Redox potentials for the investigated complexes 1, 2 and 3 in anhydrous MeCN15
Table S6 I	Photocatalytic CO ₂ reduction data with 1 using purpurin as photosensitizer. ^{<i>a</i>} 15
Table S7	Comparison of the photocatalytic performances for CO_2 reduction with molecular
complexes	in noble-metal-free systems

Scheme S1 Structures of photosensitizer (purpurin) and sacrificial reductant (BIH).

Figure S1 ESI/MS spectrum of 1 in MeCN.

Figure S2 UV-vis spectra of 0.1 mM solution of 1 in DMF.

Figure S3 (a) Cyclic voltammogram of 1 (1 mM) and dqtpy ligand (0.1 mM) in MeCN solution under Ar. (b) Cyclic voltammogram of 1 mM 1 in 0.1 M ${}^{n}Bu_{4}NPF_{6}$ in MeCN under Ar and CO₂ atmosphere (1 atm), and in the absence and presence of TFE.

Figure S4 Cyclic voltammogram of 1 mM 2 in 0.1 M ${}^{n}Bu_{4}NPF_{6}$ in MeCN under Ar and CO₂ atmosphere (1 atm), and in the absence and presence of TFE.

Figure S5 Cyclic voltammogram of 1 mM 3 in 0.1 M ${}^{n}Bu_{4}NPF_{6}$ in MeCN under Ar and CO₂ atmosphere (1 atm), and in the absence and presence of TFE.

Figure S6 (a) Cyclic voltammogram of 1 (1 mM) and dqtpy ligand (1 mM) in 0.1 M ${}^{n}Bu_{4}NPF_{6}$ in DMF solution under Ar. (b) Cyclic voltammogram of 1 mM 1 in 0.1 M ${}^{n}Bu_{4}NPF_{6}$ in DMF under Ar and CO₂ atmosphere (1 atm), and in the absence and presence of TFE.

Figure S7 De-convoluted gas chromatograms of gaseous products in the headspace of sample flask. Sample solution: 0.05 mM 1, 0.05 mM purpurin, 0.1 M BIH and 5% TFE in ${}^{13}CO_2$ -saturated DMF. The peak at m/z 29 is assigned to ${}^{13}CO$. Only a minor peak at m/z 28 was observed due to N₂ from residual air (O₂ and N₂ were observed by GC-TCD).

Figure S8 Stability tests of 1/purpurin/BIH/TFE/DMF system during light irradiation. Plot of CO versus time for the first cycle (\blacksquare) and second cycle with re-bubbling of CO₂ and the addition of another equiv. of 1 (\bullet) and purpurin (\blacktriangle). The solution contains initially 0.05 mM 1, 0.05 mM purpurin, 0.1 M BIH and 5% TFE.

Figure S9 Particle size distribution of a CO₂-saturated DMF solution containing 0.05 mM **1**, 0.05 mM purpurin, 0.1 M BIH and 5% TFE determined by dynamic light scattering (DLS) measurements during irradiation from 0 to 15 h.

Figure S10 Comparison of the photocatalytic CO_2 reduction performance with and without Hg(0) (0.1 mL) in a DMF solution that containing 0.05 mM 1, 0.05 mM purpurin, 0.1 M BIH and 5% TFE. The TON for CO did not decrease when Hg(0) is added.

Figure S11 Stern-Volmer plot of the lifetime quenching of purpurin (0.05 mM) by BIH in DMF.

Figure S12 Absorbance change at 398 nm as a function of time in a CO_2 -saturated DMF solution containing 0.05 mM purpurin, 0.1 M BIH and 5% TFE during irradiation in the absence (black) and presence of 0.05 mM 1 (red).

Figure S13 UV-Vis spectral of the solution (a CO_2 -saturated DMF solution containing 0.05 mM Fe(ClO₄)₂, 0.05 mM purpurin, 0.1 M BIH and 5% TFE) during irradiation.

Formula sum	C35 H24 Cl2 Fe N6 O8
Formula weight	783.36 g/mol
Crystal system	triclinic
Space-group	P -1 (-2)
Cell parameters	a=11.4470(5) Å b=11.5457(5) Å c=13.5944(6) Å α =94.038(3)° β =105.644(4)° γ =103.365(4)°
Cell ratio	a/b=0.9915 b/c=0.8493 c/a=1.1876
Cell volume	1666.29(13) Å ³
Ζ	2
Calc. density	1.5612 g/cm ³
RAll	0.0614
Pearson code	aP152
Formula type	NO2P6Q24R35
Wyckoff sequence	i76
CCDC number	1868077

Table S1 Experiment details of X-ray crystallography of [Fe(dqtpy)(CH₃CN)](ClO₄)₂.

Table S2 Selected bond lengths (Å) and angels (°) of [Fe(dqtpy)(CH₃CN)](ClO₄)₂.

Selected bond lengths (Å)								
Fe1-N1	2.123(3)	Fe1-N2	2.137(3)	Fe1-N3	2.097(3)			
Fe1-N4 2.138(3) Fe1-N5		2.231(3)	Fe1-N6	2.206(3)				
Selected angels (°)								
N1-Fe1-N2	86.05(13)	N2-Fe1-N5	104.09(13)	N3-Fe1-N5	114.01(12)			
N1-Fe1-N4	125.59(12)	N2-Fe1-N6	95.83(13)	N3-Fe1-N6	81.12(13)			
N1-Fe1-N5	85.90(11)	N3-Fe1-N1	155.52(13)	N4-Fe1-N5	77.64(11)			
N1-Fe1-N6	84.77(12)	N3-Fe1-N2	75.65(13)	N4-Fe1-N6	91.17(12)			
N2-Fe1-N4	148.15(12)	N3-Fe1-N4	74.81(12)	N6-Fe1-N5	157.33(12)			

Formula sum	C35 H24 Cl2 Co N6 O8
Formula weight	786.44 g/mol
Crystal system	triclinic
Space-group	P -1 (-2)
Cell parameters	a=11.4087(4) Å b=11.6129(4) Å c=26.4344(7) Å α =78.865(2)° β =81.873(2)° γ =76.817(3)°
Cell ratio	a/b=0.9824 b/c=0.4393 c/a=2.3170
Cell volume	3328.35(17) Å ³
Z	4
Calc. density	1.610 g/cm ³
CCDC number	1893393

Table S3 Experiment details of X-ray crystallography of [Co(dqtpy)(CH₃CN)](ClO₄)₂.

Table S4 Selected bond lengths (Å) and angels (°) of [Co(dqtpy)(CH₃CN)](ClO₄)₂.

Selected bond lengths (Å)								
Col-N1	2.222(2)	Co1-N2	2.090(2)	Co1-N3	2.052(2)			
Co1-N4	2.114(2)	Co1-N5	2.087(2)	Co1-N6	2.175(2)			
Selected angels (°)								
N2-Co1-N1	78.38(8)	N3-Co1-N4	76.42(9)	N5-Co1-N1	83.99(8)			
N2-Co1-N4	148.48(9)	N3-Co1-N5	158.61(9)	N5-Co1-N2	122.36(9)			
N2-Co1-N6	93.23(9)	N3-Co1-N6	82.09(9)	N5-Co1-N4	87.91(9)			
N3-Co1-N1	112.31(8)	N4-Co1-N1	98.24(9)	N5-Co1-N6	85.83(9)			
N3-Co1-N2	76.09(9)	N4-Co1-N6	97.97(9)	N6-Co1-N1	160.49(9)			

Complex	M ^{II/I}	M ^{I/0}	dqtpy/dqtpy-•
1	-0.80	-1.06	-1.78
2	-0.58	-1.47	-1.75
3	-0.49	-1.40	-1.85

Table S5 Redox potentials for the investigated complexes 1, 2 and 3 in anhydrous MeCN.

Experimental conditions: 0.1 M ⁿBu₄NPF₆ in MeCN using glassy carbon as working electrode, SCE as reference electrode and platinum wire as counter electrode with scan rate of 0.1 Vs^{-1} .

Entry	1	Purpurin	Sacrificial	Proton	Q - 1t	TON(selectivity %)	
	mМ	mM	reductant	source	Solvent	СО	H_2
1	0.05	0.05	0.1 M BIH	-	DMF	280(98.6)	4(1.4)
2	0.05	0.05	0.1 M BIH	-	NMP	196(99.5)	1(0.5)
3	0.05	0.05	0.1 M BIH	-	MeCN	30(99.3)	0.2(0.7)
4	0.05	0.05	0.1 M BIH	-	THF	121(97.6)	3(2.4)
5	0.05	0.05	0.1 M BIH	3% TFE	DMF	530(99.2)	4(0.8)
6	0.05	0.05	0.1 M BIH	5% TFE	DMF	544(99.3)	4(0.7)
7	0.05	0.05	0.1 M BIH	8% TFE	DMF	408(99.3)	3(0.7)
8	0.05	0.05	0.1 M BIH	$5\%~{ m H_2O}$	DMF	274(96.1)	11(3.9)
9	0.05	0.1	0.1 M BIH	5% TFE	DMF	628(99.7)	2(0.3)
10	0.02	0.1	0.1 M BIH	5% TFE	DMF	843(99.5)	4(0.5)

Table S6 Photocatalytic CO₂ reduction data with 1 using purpurin as photosensitizer.^a

^{*a*} In a typical run, a CO₂-saturated DMF solution containing **1** (0.05 mM), purpurin (0.05 mM), BIH (0.1 M) and 5% TFE was irradiated for 15 h using blue LED (460 nm) under a CO₂ atmosphere.

Catalust	Dhotoconsitizon	[Catalyst]/	TON	TON(selectivity %) based on catalyst		Quantum	Postion conditions	Doforonco
Catalyst	Fnotosensitizer	[Photosensitizer]	CO	H ₂	HCOO-	yield	Reaction conditions	Kelerence
[Fe(dqtpy)(H ₂ O)] ²⁺	Purpurin	0.05 mM / 0.05 mM	544(99.3)	4(0.7)	0(0)	0.12%	0.1 M BIH and 5% TFE in DMF, blue LED (460 nm), 15 h	this work
Fe(0) porphyrin	9CNA	2 µM / 0.2 mM	60(100)	0(0)	0(0)	0.0008%	0.05 M TEA and 0.2 mM 9CNA in MECN, λ >400 nm, 45 h	<i>J. Am. Chem.</i> <i>Soc.</i> 2014 , <i>136</i> , 16768-16771. ¹
Fe- <i>p</i> -TMA	Purpurin	$2~\mu M$ / 0.2 mM	120(95)	6(5)	0(0)	-	0.1 M NaHCO ₃ , 0.05 M TEA, and 0.2 mM purpurin in MeCN/H ₂ O (1:9 v/v), λ>420 nm, 94 h	<i>ChemSusChem</i> 2017 , <i>10</i> , 4447- 4450. ²
Fe- <i>p</i> -TMA	Non-sensitized	$2~\mu M$ / $0.2~mM$	101(100)	0(0)	0(0)	-	0.02 M BIH in MeCN, λ >420 nm, 102 h	<i>Chem. Commun.</i> 2017 , <i>53</i> , 2830-2833. ³
$[Co(apy)(OH_2)_2]^{2+}$	Purpurin	0.05 mM / 2 mM	197(95)	1(1)	9(4)	0.8%	0.1 M BIH in DMF, blue LED (460 nm), 11 h	
	1 unp unit	0.005 mM / 2 mM	790(90)	11(1)	78(9)	-		J. Am. Chem. Soc. 2016, 138, 9413-9416. ⁴
$[F_{\alpha}(any)(OH)]^{2+}$	Purpurin	0.05 mM / 0.02 mM	520(97)	0(0)	14(3)	1.1%		
	Turpum	0.005 mM / 0.02 mM	1365(92)	0(0)	115(8)	-		
[Fe(qpy)(OH ₂) ₂] ²⁺	mpg-C ₃ N ₄	0.02 mM / 8.0 mg	155(97)	<1	8(3)	4.2%	MeCN/TEOA (4:1, v/v), $\lambda \ge 400 \text{ nm}$, 17 h	<i>J. Am. Chem.</i> Soc. 2018 , 140, 7437-7440. ⁵
Fe(dmp) ₂ (NCS) ₂	Cu(dmp)(P) ₂ ⁺	0.05 mM / 0.25 mM	273(78)	75(22)	0(0)	6.7%	0.05 M BIH in CH ₃ CN- TEOA (5:1 v/v) mixed solution (4 mL), λ =436 nm (high-pressure Hg lamp), 12 h	J. Am. Chem. Soc. 2016 , 138, 4354-4357. ⁶
Cyclopentadienone iron complex	In situ Cu PS	0.13 mM / 0.67 mM	487(99)	7(1)	0(0)	13.3%	1 μ mol Fe catalyst, 5 μ mol [Cu(MeCN) ₄]PF ₆ , 15 μ mol xantphos P–P ligand, 5 μ mol N–N ligand, 0.1 M BIH in 7.5 mL NMP/TEOA (5 : 1, v/v), Hg-lamp (1.5 W, 400–700	<i>Green Chem.</i> 2017 , <i>19</i> , 2356- 2360. ⁷

Table S7 Comparison of the photocatalytic performances for CO₂ reduction with molecular complexes in noble-metal-free systems.

							nm), 5 h	
[Ni(terpyS) ₂] ²⁺	CdS	100 μM / 1 μM	20(62)	12(38)	0(0)	0.28%	0.1 M aq. TEOA, pH 6.7 in H ₂ O; 22 h irradiation, 100 mW cm ⁻² , AM1.5G, λ>400 nm, 25°C	J. Am. Chem. Soc. 2017 , 139, 7217-7223. ⁸
NiCycP	ZnSe– BF ₄ /MEDA	10 mM / 0.5 mM	283(34)	549(66)	0(0)	3.4%	25 mM MEDA, 0.1 M AA in H ₂ O, pH 5.5, λ>400 nm (AM 1.5G), 20 h	<i>Chem. Sci.</i> 2018 , 9, 2501-2509. ⁹
Dinuclear cobalt complex Co ₂ L	CdS-MPA	1 μM / 4 μM	1380(95)	32(2)	0(0)	n,d,	25 mL aqueous solution of 0.1 M NaHCO ₃ , 120 h, 300 W Xe lamp ($\lambda > 420$ nm).	ACS Catal., 2018, 8, 11815- 11821. ¹⁰
[Mn(4OMe)]	$[Cu_2(P_2bph)_2]^{2+}$	0.05 mM / 0.25 mM	1314(CO+HCOOH)		57%	BIH (0.1 M), DMA-TEOA (4:1, v/v) solution, $\lambda_{ex} = 436$ nm, 36 h, 25 °C	J. Am. Chem. Soc., 2018 , 140, 17241-17254. ¹¹	

References

- 1. J. Bonin, M. Robert and M. Routier, J. Am. Chem. Soc., 2014, 136, 16768-16771.
- 2. H. Rao, J. Bonin and M. Robert, *ChemSusChem*, 2017, **10**, 4447-4450.
- 3. H. Rao, J. Bonin and M. Robert, Chem. Commun., 2017, 53, 2830-2833.
- 4. Z. Guo, S. Cheng, C. Cometto, E. Anxolabéhère-Mallart, S.-M. Ng, C.-C. Ko, G. Liu, L. Chen, M. Robert and T.-C. Lau, J. Am. Chem. Soc., 2016, 138, 9413-9416.
- 5. C. Cometto, R. Kuriki, L. Chen, K. Maeda, T. C. Lau, O. Ishitani and M. Robert, J. Am. Chem. Soc., 2018, 140, 7437-7440.
- 6. H. Takeda, K. Ohashi, A. Sekine and O. Ishitani, J. Am. Chem. Soc., 2016, 138, 4354-4357.
- 7. A. Rosas-Hernandez, C. Steinlechner, H. Junge and M. Beller, Green Chem., 2017, 19, 2356-2360.
- 8. M. F. Kuehnel, K. L. Orchard, K. E. Dalle and E. Reisner, J. Am. Chem. Soc., 2017, 139, 7217-7223.
- 9. M. F. Kuehnel, C. D. Sahm, G. Neri, J. R. Lee, Katherine L. Orchard, A. J. Cowan and E. Reisner, Chem. Sci., 2018, 9, 2501-2509.
- 10. Q.-Q. Bi, J.-W. Wang, J.-X. Lv, J. Wang, W. Zhang and T.-B. Lu, *ACS Catal.*, 2018, **8**, 11815-11821.
- 11. H. Takeda, H. Kamiyama, K. Okamoto, M. Irimajiri, T. Mizutani, K. Koike, A. Sekine and O. Ishitani, J. Am. Chem. Soc., 2018, 140, 17241-17254.