Supplementary Information

Figure S 1: PXRD pattern of $RE_2[B_2(SO_4)_6]$ (RE = Y, La-Nd, Sm, Eu, Tb-Lu) in comparison to the calculated pattern of $La_2[B_2(SO_4)_6]$.

Figure S 2: PXRD pattern of doped $Y_{2-2x}RE_{2x}[B_2(SO_4)_6]$ with RE = Ce, Eu and Tb and x = 0.001-0.1 in comparison to the calculated pattern of $Y_2[B_2(SO_4)_6]$

Figure S 2: Microscope images of Ce₂[B₂(SO₄)₆].

Figure S 3: Enlarged coordination environment of Eu^{3+} with complete anions.

Figure S 4: Infrared spectra of $RE_2[B_2(SO_4)_6]$ (RE = Y, La-Nd, Sm, Eu, Tb-Lu).

Figure S 5: Excitation ($\lambda_{em.}$ = 542 nm) and emission ($\lambda_{ex.}$ = 365 nm) spectra of Tb₂[B₂(SO₄)₆]. The assignment of the excitation spectra is listed in Table S1.

Figure S 6: Emission spectra of $Y_2[B_2(SO_4)_6]$:Tb³⁺ (0.1 % doped) at different excitation wavelengths based on the strongest excitation bands at 212 nm (4f \rightarrow 5d), 254 nm (⁷F₆ \rightarrow ⁵K₉), and 366 nm (⁷F₆ \rightarrow ⁵L₁₀).

Band	Transition ${}^{7}F_{6} \rightarrow$	Wavelength /nm
а	5 <i>d</i>	212
b	⁵ K ₇	240
С	5 <i>d</i>	253
d	⁵ I ₆	263
е	⁵ I ₇	270
f	⁵ I ₈	283
g	⁵ H ₅	293
h	⁵ H ₆	301
i	⁵ H ₇	316
j	⁵ D ₁	325
k	⁵ L ₇ + ⁵ L ₈	339
Ι	⁵ L9	349
m	⁵ G ₅	356
n	⁵ L ₁₀	366
0	⁵ G ₆	373

Table S 1: Assignment of the excitation bands in $Tb_2[B_2(SO_4)_6]$ according to Carnall^[1]

Figure S 7: Ratio of the integrated intensities ${}^{5}D_{3} \rightarrow {}^{7}F_{J}$ to ${}^{5}D_{3} \rightarrow {}^{7}F_{J}$ in dependence of the Tb³⁺ concentration in Y_{2-2x}Tb_{2x}[B₂(SO₄)₆] with x = 0.001, 0.01 and 0.05.

Figure S 8: Temperature dependence of the effective magnetic moment of $Eu_2[B_2(SO_4)_6]$ and $Eu_2Ta_2O_6N^{[2]}$ determined from ZFC measurements.

Figure S 9: Thermogram of $Eu_2[B_2(SO_4)_6]$ in dependence of the time. The second decomposition step from the sulfate to the oxide is not fully completed at 1000 °C, resulting in a slightly too low observed mass loss.

Figure S 10: PXRD of the decomposed Eu₂[B₂(SO₄)₆] after 1000 °C compound in comparison to a calculated pattern of EuBO₃.^[3]

Atom	Wyckoff symbol	x	У	Z	U _{eq}
Eu1	8 <i>f</i>	0.18779(3)	0.95165(3)	0.15554(3)	0.00581(11)
S1	8 <i>f</i>	0.13794(14)	1.20181(16)	0.36121(16)	0.0063(4)
S2	8 <i>f</i>	0.12790(14)	0.51284(16)	0.07698(16)	0.0065(4)
S3	8 <i>f</i>	-0.07760(14)	0.85044(16)	0.08057(16)	0.0071(4)
011	8 <i>f</i>	0.1798(4)	1.1576(4)	0.4756(4)	0.0111(8)
012	8 <i>f</i>	0.1211(4)	1.1105(4)	0.2720(5)	0.0111(8)
013	8 <i>f</i>	0.1959(4)	1.2983(5)	0.3169(5)	0.0124(12)
014	8 <i>f</i>	0.0339(4)	1.2495(5)	0.3825(4)	0.0085(11)
021	8 <i>f</i>	0.1765(4)	0.4812(4)	-0.0292(5)	0.0125(12)
022	8 <i>f</i>	0.1865(4)	0.5179(4)	0.1887(5)	0.0109(12)
023	8 <i>f</i>	0.0813(4)	0.6321(4)	0.0607(5)	0.0125(12)
024	8 <i>f</i>	0.0419(4)	0.4311(4)	0.0961(5)	0.0094(12)
031	8 <i>f</i>	0.0202(4)	0.8850(5)	0.1210(5)	0.0182(13)
032	8 <i>f</i>	0.1154(5)	1.0840(5)	0.0233(5)	0.0212(14)
033	8 <i>f</i>	-0.1471(4)	0.8491(5)	0.1743(5)	0.0132(12)
034	8f	-0.0748(4)	0.7228(4)	0.0404(5)	0.0120(12)
B1	8f	0.0006(7)	0.6700(7)	-0.0271(7)	0.0081(18)

Table S 2: Wyckoff symbol, atomic coordinates x; y; z and equivalent isotropic displacement parameters U_{eq} for $Eu_2[B_2(SO_4)_6]$ (corresponding standard deviations given in parentheses)

Table S 3: Anisotropic displacement parameters U_{ij} in $Å^2$ for Eu₂[B₂(SO₄)₆] (corresponding standard deviations given in parentheses)

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Eu1	0.0045(2)	0.00707(18)	0.00596(17)	-0.00037(17)	0.00133(12)	0.00053(18)
S1	0.0050(10)	0.0059(9)	0.0082(9)	0.0000(7)	0.0020(7)	-0.0007(7)
S2	0.0058(10)	0.0060(9)	0.0077(9)	0.0014(7)	0.0005(7)	-0.0015(7)
S3	0.0063(10)	0.0086(9)	0.0067(9)	-0.0008(7)	0.0020(7)	0.0003(7)
011	0.011(2)	0.0110(19)	0.0112(19)	-0.0047(15)	-0.0005(15)	0.0061(17)
012	0.011(2)	0.0110(19)	0.0112(19)	-0.0047(15)	-0.0005(15)	0.0061(17)
013	0.009(3)	0.014(3)	0.015(3)	0.002(2)	0.004(2)	-0.003(2)
014	0.006(3)	0.013(3)	0.006(3)	-0.002(2)	-0.003(2)	0.001(2)
021	0.009(3)	0.010(3)	0.020(3)	-0.003(2)	0.008(2)	-0.005(2)
022	0.011(3)	0.010(3)	0.011(3)	0.001(2)	-0.003(2)	-0.004(2)
023	0.012(3)	0.007(3)	0.018(3)	0.002(2)	0.001(2)	-0.001(2)
024	0.011(3)	0.005(3)	0.014(3)	-0.002(2)	0.006(2)	-0.002(2)
O31	0.016(4)	0.025(3)	0.014(3)	-0.011(3)	0.004(2)	-0.009(3)
032	0.026(4)	0.022(3)	0.016(3)	0.012(2)	0.004(3)	0.012(3)
033	0.007(3)	0.022(3)	0.012(3)	-0.004(2)	0.007(2)	-0.004(2)
034	0.009(3)	0.009(3)	0.019(3)	-0.002(2)	0.008(2)	-0.002(2)
B1	0.010(5)	0.005(4)	0.009(4)	-0.003(3)	0.004(3)	0.000(3)

Figure S 11: Reflection spectrum of $Nd_2[B_2(SO_4)_6]$. The transitions originating from the ground state ${}^{4}I_{9/2}$ are assigned in table S 4.

Band	Transition ${}^{4}I_{9/2} \rightarrow$	Wavelength /nm
1	${}^{2}I_{13/2} + {}^{4}D_{7/2} + {}^{2}L_{17/2}$	330
2	⁴ D _{5/2} + ⁴ D _{3/2}	350
3	${}^{4}D_{1/2} + {}^{2}I_{11/2} + {}^{2}I_{15/2}$	355
4	${}^{2}P_{1/2} + {}^{2}D_{5/2}$	430
5	${}^{2}K_{15/2} + {}^{2}G_{9/2} + {}^{2}D_{3/2} + {}^{4}G_{11/2}$	450-480
6	${}^{2}K_{13/2} + {}^{4}G_{7/2} + {}^{4}G_{9/2}$	500-530
7	⁵ G _{5/2} + ² G _{7/2}	581
8	² H _{11/2}	626
9	⁴ F _{9/2}	684
10	⁴ S _{3/2}	734
11	⁴ F _{7/2}	749
12	² H _{9/2}	795

Table S 4: Assignment of the transitions in Fig. S11 according to Carnall^[4]

Figure S 12: Reflection spectrum of $Er_2[B_2(SO_4)_6]$. The transitions originating from the ground state ${}^4I_{15/2}$ are assigned in table S 4.

Band	Transition ${}^{4}I_{15/2} \rightarrow$	Wavelength /nm
1	⁴ D _{7/2}	255
2	⁴ G _{9/2}	364
3	⁴ G _{11/2}	378
4	(² G, ⁴ F) _{9/2}	406
5	⁴ F _{5/2}	450
6	⁴ F _{7/2}	487
7	(² H, ⁴ G) _{11/2}	581
8	⁴ S _{3/2}	626
9	⁴ F _{9/2}	684

References

- [1] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys. 1968, 49, 4447–4449.
- [2] B. Anke, S. Hund, C. Lorent, O. Janka, T. Block, R. Pöttgen, M. Lerch, Z. anorg. allg. Chem. 2017, 643, 1824–1830.
- [3] R. E. Newnham, M. J. Redman, R. P. Santoro, J. Am. Ceram. Soc. 1963, 46, 253–256.
- [4] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys. 1968, 49, 4424–4442.