Electronic Supplementary Information

Facile Synthesis of Mixed O, S or Se Substituted Hexabenzenes and Their Potential as Cu(II) ion Probe

Abhishek Kumar,^a Mantesh K.Yadav,^a Jagriti Singh,^a Jai Deo Singh,^{*a} and Ray J. Butcher^b

^aDepartment of Chemistry, Indian Institute of Technology(IITD), Hauz Khas, New Delhi-110016, INDIA

^bDepartment of Chemistry, Howard University, Washington D.C.-20059,USA

Fig. S1 ¹H NMR spectrum of 2a in CDCl₃

Fig. S3 ⁷⁷Se NMR spectrum of 2a in CDCl₃

Fig. S4 ES-MS spectrum of 2a (Inset: Expanded portion showing molecular ion peak)

S4

Fig. S7 77 Se NMR spectrum of 3a in CDCl₃

Fig. S8 ES-MS spectrum of 3a (Inset: Expanded portion showing molecular ion peak)

S7

Fig. S11 ⁷⁷Se NMR spectrum of 4a in CDCl₃

S9

Fig. S15 ⁷⁷Se NMR spectrum of 5a in CDCl₃

Fig. S16 ES-MS spectrum of 5a (Inset: Expanded portion showing molecular ion peak)

Fig. S17 Change ratio $\{[(F_0 - F)/(F_0-F_{Ni(II)})] \times 100\}$ of fluorescence intensity of '*oxo*' analogue $[(C_6H_5OCH_2)_6C_6]$ on addition of 15 equivalents of various tested metal ions with respect to change observed with Ni(II) which exhibited the largest change in fluorescence intensity.

Fig. S18 Change ratio $\{[(F_0 - F)/(F_0-F_{Hg(II)})] \times 100\}$ of fluorescence intensity of '*seleno*' analogue $[(C_6H_5SeCH_2)_6C_6]$ on addition of 15 equivalents of various tested metal ions with respect to change observed with Hg(II) which exhibited the largest change in fluorescence intensity.

Detection limit calculations

The detection limit was calculated using the formula $(3\sigma/k)$, where σ is the standard deviation

and k is the slope of fluorescence intensity change with metal ion concentration.

In case of fluorescence changes obtained on addition of Cu(NO₃)₂ solution into species 5a,

Slope $k = 20558 \text{ AU}/\mu\text{M} = 2.0558 \text{ x } 10^{10} \text{ AU}/\text{M}$.

The Standard Deviation (σ) was calculated as 50.5

Therefore, detection limit = $7.4 \times 10^{-9} M (7.4 \text{ nM})$.

Chart S1 Various possible conformational isomers of hexa-substituted benzenes.

Compound	2a	3a
Empirical formula	C30 H27 Br1.09 Cl1.91 Se3	C48 H39 F3 Se6
Formula weight	779.38	1146.55
Temperature	298(2) K	295(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Orthorhombic	Triclinic
Space group	Pnma	P -1
a (Å)	15.970(2)	12.166(4)
b (Å)	13.690(4)	13.534(4)
c (Å)	14.857(1)	15.244(4)
α (°)	90	114.409(6)
β (°)	90	105.717(6)
γ (°)	90	91.805(6)
Ζ	4	2
D _{calc} (Mg/m ³)	1.594	1.754

Table S1 Crystallographic data and refinement details for compounds 2a and 3a.

F(000)	1519	1116
Theta range for data collection	1.87 to 28.23°	1.54 to 26.37°
Reflections collected	36785	12745
Independent reflections	4138	8675
R(int)	0.0983	0.0482
Completeness to theta = 25.00°	100 %	98.7 %
Data / restraints / parameters	4138 / 222 / 224	8675 / 0 / 502
Goodness-of-fit on F ²	1.094	0.972
Final R indices [I>2sigma(I)]	R1 = 0.0731, w $R2 = 0.1267$	R1 = 0.0705, wR2 = 0.1583
R indices (all data)	R1 = 0.1164, wR2 = 0.1416	R1 = 0.1532, wR2 = 0.1950