Supporting Information

Phenalenyl-based Nickel Catalyst for Hydroboration of Olefins under Ambient Conditions

Gonela Vijaykumar,[†] Mrinal Bhunia[†] and Swadhin K. Mandal^{*†}

[†]Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India

E-mail: swadhin.mandal@iiserkol.ac.in

Contents

Spectroscopic data of products in catalytic hydroboration of vinylarenes	
Spectroscopic data of products in catalytic hydroboration of aliphatic alkenes	
¹ H, ¹³ C and ¹¹ B NMR spectra images	
Radical trapping by TEMPO	
References	

Spectroscopic data of products in catalytic hydroboration of vinylarenes

4,4,5,5-tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane¹

¹H NMR (500 MHz, CDCl₃): δ 7.29–7.7.17 (m, 4H), 7.16-7.13 (m, 1H), 2.44 (q, *J* = 7.5 Hz, 1H), 1.36 (d, *J* = 7.5 Hz, 3H), 1.21 (d, *J* = 5.3 Hz, 12H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 144.9 (C_q), 128.2 (CH), 127.7 (CH), 125.0 (CH), 83.2 (C_q), 24.6 (CH), 24.5 (CH₃), 17.0 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 33.59 ppm.

4,4,5,5-tetramethyl-2-(1-p-tolylethyl)-1,3,2-dioxaborolane²

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.12 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 2.38 (q, J = 7.5 Hz, 1H), 2.30 (s, 3H), 1.32 (d, J = 7.5 Hz, 3H), 1.21 (s, 6H), 1.20 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 141.8 (C_q), 134.37 (C_q), 129.0 (CH), 127.6 (CH), 83.2 (C_q), 24.6 (CH), 24.5 (CH₃), 20.9 (CH₃), 17.2 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 33.6 ppm.

2-(1-(4-methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane¹

¹H NMR (500 MHz, CDCl₃ 25 °C): δ 7.14 (d, J = 8.7 Hz, 2H), 6.82 (d, J = 8.7 Hz, 2H), 3.78 (s, 3H), 2.38 (q, J = 7.5 Hz, 1 H), 1.29 (d, J = 7.5 Hz, 3H), 1.20 (d, J = 5.3 Hz, 12H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 157.2 (C_q), 137.0 (C_q), 128.6 (CH), 113.7 (CH), 83.2 (C_q), 55.1 (CH₃), 24.6 (CH), 24.5 (CH₃), 17.3 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 33.55 ppm.

2-(1-(4-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane³

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.18–7.15 (m, 2H), 6.96–6.92 (m, 2H), 2.42 (q, J = 7.5 Hz, 1H), 1.32 (d, J = 7.5 Hz, 3H), 1.21 (s, 6H), 1.20 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 161.8, (d, J = 126.9 Hz, C_q), 140.5 (C_q), 129.0 (d, J = 7.5 Hz, CH), 115.0 (d, J = 20 Hz, CH), 83.3 (C_q), 24.6 (CH), 24.5 (CH₃), 17.1 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 33.5 ppm. ¹⁹F NMR (376 MHz. CDCl₃): δ -118.9 ppm.

2-(1-(3-ethoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

¹H NMR (500 MHz, CDCl₃) δ 7.17 (dd, J = 7.4, 1.3 Hz, 1H), 7.11 (td, J = 7.9, 1.6 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 6.80 (d, J = 8.1 Hz, 1H), 4.04 (qd, J = 7.0, 2.7 Hz, 2H), 2.55 (q, J = 7.5 Hz, 1H), 1.42 (t, J = 7.0 Hz, 3H), 1.30 (d, J = 7.6 Hz, 3H), 1.23 (d, J = 3.4 Hz, 12H). ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 156.2 (C_q), 134.1 (C_q), 128.7 (CH), 126.0 (CH), 120.5 (CH), 110.8 (CH), 82.9 (C_q), 63.3 (CH₂), 24.7 (CH), 24.6 (CH₃), 15.1 (CH₃), 14.9 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.0 ppm. ESI-MS: (m/z): calcd for C₁₆H₂₅BNO₃H, [M+H]⁺: 277.1975; found, 277.1972.

2-(1-(3-(benzyloxy)phenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.23 (dd, J = 7.5, 1.6 Hz, 1H), 7.16 – 7.09 (m, 1H), 6.94 (td, J = 7.5, 0.9 Hz, 1H), 6.86 (d, J = 8.1 Hz, 1H), 5.12 (s, 2H), 2.65 (q, J = 7.5 Hz, 1H), 1.38 (d, J = 7.5 Hz, 3H), 1.13 (s, 12H). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 155.9 (C_q), 137.4 (C_q), 134.1 (C_q), 128.4 (CH), 128.3 (CH), 126.9 (CH), 126.1 (CH), 120.9 (CH), 111.1 (CH), 83.0

(C_q), 69.6 (CH₂), 24.6 (CH), 24.5 (CH₃), 15.16 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.0 ppm. ESI-MS: (m/z): calcd for C₂₁H₂₇BO₃H, [M+H]⁺: 339.2132; found, 339.2128.

4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane¹

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.80–7.74 (m, 3H), 7.65 (s, 1H), 7.45–7.37 (m, 3H), 2.63 (q, *J* = 7.5 Hz, 1H), 1.43 (d, *J* = 7.5 Hz, 3H), 1.21 (s, 6H), 1.20 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 142.7 (C_q), 134.0 (C_q), 131.8 (C_q), 127.8 (CH), 127.6 (CH), 127.5 (CH), 127.3 (CH), 125.8 (CH), 125.4 (CH), 124.9 (CH), 83.5 (C_q), 24.8 (CH), 24.7 (CH₃), 17.0 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.49 ppm.

2-(1-(biphenyl-4-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane¹

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.60-7.58 (m, 2H), 7.52-7.50 (m, 2H), 7.43-7.40 (m, 2H), 7.32-7.29 (m, 3H), 2.48 (q, *J* = 7.6 Hz, 1H), 1.37 (d, *J* = 7.6 Hz, 3H), 1.23 (s, 6H), 1.21 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 144.1 (C_q), 141.2 (C_q), 137.9 (C_q), 128.6 (CH), 128.1 (CH), 127.0 (CH), 126.9 (CH), 126.8 (CH), 83.3 (C_q), 24.6 (CH), 24.6 (CH₃), 17.0 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 33.58 ppm.

2-(1-(6-methoxynaphthalen-2-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane⁴

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.69-7.65 (m, 2H), 7.59 (m, 1H), 7.38-7.35 (m, 1H), 7.13-7.1 (m, 2H), 3.92 (s, 3H), 2.60 (q, *J* = 4.8 Hz, 1H), 1.43 (d, *J* = 4.8 Hz, 3H), 1.22 (s, 6H), 1.21 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 156.9 (C_q), 140.2 (C_q), 132.6 (C_q), 129.3 (C_q), 128.9 (CH), 127.6 (CH),

126.5 (CH), 125.1 (CH), 118.3 (CH), 105.6 (CH), 83.3 (C_q), 55.2 (CH₃), 24.6 (CH), 24.5 (CH₃), 16.9 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 33.37 ppm.

2-(1-(3,5-dimethoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 6.40 (s, 2H), 6.26 (s, 1H), 3.77 (s, 6H), 2.38 (q, J = 7.5 Hz, 1H), 1.30 (d, J = 7.5 Hz, 3H), 1.22 (s, 6H), 1.21 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 160.6 (C_q), 147.4 (C_q), 105.9 (CH), 97.4 (CH), 83.3 (C_q), 55.1(CH₃), 24.6 (CH), 24.6 (CH₃), 16.9 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 33.4 ppm. ESI-MS: (m/z): calcd for C₁₆H₂₅BO₄H, [M+H]⁺: 293.1924; found, 293.1929.

Spectroscopic data of products in catalytic hydroboration of aliphatic alkenes.

2-(3-Phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane⁵

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.25 (d, J = 7.3 Hz, 2H), 7.18 – 7.16 (m, 3H), 2.61 (t, J = 7.7 Hz, 2H), 1.77 – 1.69 (m, 2H), 1.24 (s, 12H), 0.83 (t, J = 7.9 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 142.7 (C_q), 128.5 (CH), 128.1 (CH), 125.5 (CH), 82.9 (C_q), 38.5 (CH₂), 26.0 (CH₂CH₂), 24.8 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.1 ppm.

4,4,5,5-tetramethyl-2-(3-p-tolylpropyl)-1,3,2-dioxaborolane

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.07 (s, 4H), 2.58 – 2.55 (m, 2H), 2.30 (s, 3H), 1.74 – 1.67 (m, 2H), 1.24 (d, *J* = 6.0 Hz, 12H), 0.81 (t, *J* = 7.9 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 139.6 (C_q), 134.9 (C_q), 128.8 (CH), 128.4 (CH), 82.91 (C_q), 38.1 (CH₂), 26.2 (CH₂CH₂), 24.8 (CH₃), 20.9 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.1 ppm. ESI-MS: (m/z): calcd for C₁₆H₂₅BNaO₂, [M+Na]⁺: 283.1845; found, 283.1841.

2-(3-(4-Methoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane⁶

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.09 (d, J = 8.2, 2H), 6.81 (d, J = 8.2, 2H), 3.78 (s, 2H), 2.55 (t, J = 7.6, 2H), 1.72- 1.68 (m, 2H), 1.24 (s, 12H), 0.81 (t, J = 8.0, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 157.6 (C_q), 134.8 (C_q), 129.3 (CH), 113.6 (CH), 82.9 (C_q), 55.2 (CH₃), 37.6 (CH₂), 26.2 (CH₂CH₂), 24.8 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.08 ppm.

4,4,5,5-Tetramethyl-2-(3-(4-trifluoromethylphenyl)propyl)-1,3,2-dioxaborolane⁶

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.51 (d, J = 8.0 Hz, 2H), 7.27 (m, 2H), 2.66 (t, J = 7.7 Hz, 2H), 1.78 – 1.70 (m, 2H), 1.24 (s, 12H), 0.82 (t, J = 7.8 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 146.7 (C_q), 128.8 (CH), 128.1 (q, J_{C-F} = 32.2, C_q) 125.1 (q, J_{C-F} = 3.8, CH), 124.0 (q, J_{C-F} = 271.6, CF₃), 83.0 (C_q), 38.2 (CH₂), 25.7 (CH₂CH₂), 24.8 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.0 ppm. ¹⁹F NMR (376 MHz. CDCl₃): δ -62.1 ppm.

2-(3-(4-chlorophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.24–7.18 (m, 2H), 7.09 (d, J = 8.3 Hz, 2H), 2.57 (t, J = 7.7 Hz, 2H), 1.73–1.66 (m, 2H), 1.24 (s, 12H), 0.80 (t, J = 7.9 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 141.0 (C_q), 131.2 (C_q), 129.8 (CH), 128.2 (CH), 82.9 (C_q), 37.8 (CH₂), 25.9 (CH₂CH₂), 24.8 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.0 ppm. ESI-MS: (m/z): calcd for C₁₅H₂₂BClNaO₂, [M+Na]⁺: 303.1299; found, 303.1295.

2-(3-(3,5-dimethoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 6.34 (d, J = 2.0 Hz, 2H), 6.29 (s, 1H), 3.77 (s, 6H), 2.55 (t, J = 7.7 Hz, 2H), 1.77–1.65 (m, 2H), 1.24 (s, 12H), 0.82 (t, J = 7.9 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 160.6 (C_q), 145.1 (C_q), 106.6 (CH), 97.7 (CH), 82.8 (C_q), 55.2 (CH₃), 38.9 (CH₂), 25.8 (CH₂CH₂),

24.8 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.14 ppm. ESI-MS: (m/z): calcd for C₁₇H₂₇BNaO₄, [M+Na]⁺: 329.1900; found, 329.1906.

4,4,5,5-tetramethyl-2-(3-m-tolylpropyl)-1,3,2-dioxaborolane

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.15 (t, *J* = 7.5 Hz, 1H), 6.99 (d, *J* = 4.6 Hz, 2H), 6.97 (s, 1H), 2.57 (t, *J* = 7.7 Hz, 2H), 2.32 (s, 3H), 1.72 (m, 2H), 1.24 (s, 12H), 0.83 (t, *J* = 7.9 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 142.6 (C_q), 137.6 (C_q), 129.3 (CH), 128.0 (CH), 126.2 (CH), 125.5 (CH), 82.9 (C_q), 38.5 (CH₂), 26.0 (CH₂CH₂), 24.8 (CH₃), 21.3 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.1 ppm. ESI-MS: (m/z): calcd for C₁₆H₂₅BNaO₂, [M+Na]+: 283.1845; found, 283.1841.

4,4,5,5-tetramethyl-2-(3-(naphthalen-2-yl)propyl)-1,3,2-dioxaborolane⁷

¹H NMR (500 MHz, CDCl₃ 25 °C): δ 7.78–7.73 (m, 3H), 7.62 (s, 1H), 7.46–7.38 (m, 2H), 7.34 (d, J = 8.3 Hz, 1H), 2.79 (t, J = 7.7 Hz, 2H), 1.87–1.79 (m, 1H), 1.24 (s, 12H), 0.88 (t, J = 7.8 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃ 25 °C): δ 140.2 (C_q), 133.6 (C_q), 131.9 (C_q), 127.6 (CH), 127.5 (CH), 127.5 (CH), 127.4 (CH), 126.4 (CH), 125.7 (CH), 124.9 (CH), 82.9 (C_q), 38.6 (CH₂), 25.9 (CH₂CH₂), 24.8 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃ 25 °C): δ 34.11 ppm.

4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane⁸

¹H NMR (500 MHz, CDCl₃ 25 °C): δ 1.43 – 1.34 (m, 2H), 1.29 – 1.24 (m, 22H), 0.86 (q, *J* = 6.6 Hz, 3H), 0.76 (t, *J* = 7.8 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃ 25 °C): δ 82.8 (C_q), 32.4 (CH₂), 31.9 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 24.8 (CH₃), 24.0 (CH₂), 22.6 (CH₂CH₂), 14.1 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃ 25 °C): δ 34.17 ppm.

2-hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane⁶

¹H NMR (500 MHz, CDCl₃, 25 °C): δ 1.41-1.39 (m, 2H), 1.31 – 1.24 (m, 18H), 0.86 (t, *J* = 6.8 Hz, 3H), 0.76 (t, *J* = 7.7 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 82.8 (C_q), 32.1 (CH₂), 31.6 (CH₂), 24.7 (CH₃), 23.9 (CH₂), 22.5 (CH₂CH₂), 14.0 (CH₃) ppm. ¹¹B NMR (160 MHz, CDCl₃, 25 °C): δ 34.16 ppm

Figure S1. ¹H NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane

Figure S2. ¹³C NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane

Figure S3. ¹¹B NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(1-phenylethyl)-1,3,2-dioxaborolane

Figure S4. ¹H NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(1-*p*-tolylethyl)-1,3,2 dioxaborolane.

Figure S5. ¹³C NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(1-*p*-tolylethyl)-1,3,2 dioxaborolane.

Figure S6. ¹¹B NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(1-*p*-tolylethyl)-1,3,2 dioxaborolane

Figure S7. ¹H NMR spectrum (CDCl₃) of 2-(1-(4-methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Figure S8. ¹³C NMR spectrum (CDCl₃) of 2-(1-(4-methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Figure S9. ¹¹B NMR spectrum (CDCl₃) of 2-(1-(4-methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Figure S10. ¹H NMR spectrum (CDCl₃) of 2-(1-(4-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Figure S11. ¹³C NMR spectrum (CDCl₃) of 2-(1-(4-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Figure S12. ¹¹B NMR spectrum (CDCl₃) of 2-(1-(4-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Figure S13. ¹⁹F NMR spectrum (CDCl₃) of 2-(1-(4-fluorophenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Figure S14. ¹H NMR spectrum (CDCl₃) of 2-(1-(3-ethoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S15. ¹³C NMR spectrum (CDCl₃) of 2-(1-(3-ethoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S16. ¹¹B NMR spectrum (CDCl₃) of 2-(1-(3-ethoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S17. ¹H NMR spectrum (CDCl₃) of 2-(1-(3-(benzyloxy)phenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S18. ¹³C NMR spectrum (CDCl₃) of 2-(1-(3-(benzyloxy)phenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S19. ¹¹B NMR spectrum (CDCl₃) of 2-(1-(3-(benzyloxy)phenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S20. ¹H NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane.

Figure S21. ¹³C NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane.

Figure S22. ¹¹B NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane.

Figure S23. ¹H NMR spectrum (CDCl₃) of 2-(1-(3,5-dimethoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S24. ¹³C NMR spectrum (CDCl₃) of 2-(1-(3,5-dimethoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S25. ¹¹B NMR spectrum (CDCl₃) of 2-(1-(3,5-dimethoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S26. ¹H NMR spectrum (CDCl₃) of 2-(1-(biphenyl-4-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S27. ¹³C NMR spectrum (CDCl₃) of 2-(1-(biphenyl-4-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S28. ¹¹B NMR spectrum (CDCl₃) of 2-(1-(biphenyl-4-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S29. ¹H NMR spectrum (CDCl₃) of 2-(1-(6-methoxynaphthalen-2-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S30. ¹³C NMR spectrum (CDCl₃) of 2-(1-(6-methoxynaphthalen-2-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S31. ¹¹B NMR spectrum (CDCl₃) of 2-(1-(6-methoxynaphthalen-2-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S32. ¹H NMR spectrum (CDCl₃) of 2-(3-Phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S33. ¹³C NMR spectrum (CDCl₃) of 2-(3-Phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S34. ¹¹B NMR spectrum (CDCl₃) of 2-(3-Phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S35. ¹H NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(3-p-tolylpropyl)-1,3,2-dioxaborolane.

Figure S36. ¹³C NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(3-p-tolylpropyl)-1,3,2-dioxaborolane.

Figure S37. ¹¹B NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(3-p-tolylpropyl)-1,3,2-dioxaborolane.

Figure S38. ¹H NMR spectrum (CDCl₃) of 2-(3-(4-Methoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S39. ¹³C NMR spectrum (CDCl₃) of 2-(3-(4-Methoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S40. ¹¹B NMR spectrum (CDCl₃) of 2-(3-(4-Methoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S41. ¹H NMR spectrum (CDCl₃) of 2-(3-(4-chlorophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S42. ¹³C NMR spectrum (CDCl₃) of 2-(3-(4-chlorophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S43. ¹¹B NMR spectrum (CDCl₃) of 2-(3-(4-chlorophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S44. ¹H NMR spectrum (CDCl₃) of 4,4,5,5-Tetramethyl-2-(3-(4-trifluoromethylphenyl)propyl)-1,3,2-dioxaborolane.

Figure S45. ¹³C NMR spectrum (CDCl₃) of 4,4,5,5-Tetramethyl-2-(3-(4-trifluoromethylphenyl)propyl)-1,3,2-dioxaborolane.

Figure S46. ¹¹B NMR spectrum (CDCl₃) of 4,4,5,5-Tetramethyl-2-(3-(4-trifluoromethylphenyl)propyl)-1,3,2-dioxaborolane.

Figure S47. ¹⁹F NMR spectrum (CDCl₃) of 4,4,5,5-Tetramethyl-2-(3-(4-trifluoromethylphenyl)propyl)-1,3,2-dioxaborolane

Figure S48. ¹H NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(3-m-tolylpropyl)-1,3,2-dioxaborolane.

Figure S49. ¹³C NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(3-m-tolylpropyl)-1,3,2-dioxaborolane.

Figure S50. ¹¹B NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(3-m-tolylpropyl)-1,3,2-dioxaborolane.

Figure S51. ¹H NMR spectrum (CDCl₃) of 2-(3-(3,5-dimethoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S52. ¹³C NMR spectrum (CDCl₃) of 2-(3-(3,5-dimethoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S53. ¹¹B NMR spectrum (CDCl₃) of 2-(3-(3,5-dimethoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S54. ¹H NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(3-(naphthalen-2-yl)propyl)-1,3,2-dioxaborolane.

Figure S55. ¹³C NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(3-(naphthalen-2-yl)propyl)-1,3,2-dioxaborolane.

Figure S56. ¹¹B NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-(3-(naphthalen-2-yl)propyl)-1,3,2-dioxaborolane.

Figure S57. ¹H NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane.

Figure S58. ¹³C NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane

Figure S59. ¹¹B NMR spectrum (CDCl₃) of 4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane.

Figure S60. ¹H NMR spectrum (CDCl₃) of 2-hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S61. ¹³C NMR spectrum (CDCl₃) of 2-hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S62. ¹¹B NMR spectrum (CDCl₃) of 2-hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Figure S63. HRMS spectrum of reaction mixture showing formation of 4

References:

- 1. J. Huang, W. Yan, C. Tan, W. Wu and H. Jiang, Chem. Commun., 2018, 54, 1770-1773
- 2. A. Chen, L. Ren and C. M. Crudden, J. Org. Chem. 1999, 64, 9704–9710.
- S. R. Tamang, D. Bedi, S. Shafiei-Haghighi, C. R. Smith, C. Crawford and M. Findlater, *Org. Lett.*, 2018, 20, 6695–6700
- 4. C. M. Crudden, Y. B. Hleba and A. C. Chen, J. Am. Chem. Soc., 2004, 126, 9200-9201
- 5. L. Zhang, Z. Zuo, X. Leng and Z. Huang, Angew. Chem. Int. Ed., 2014, 53, 2696-2700.
- 6. J. Zheng, J.-B. Sortais and C. Darcel, ChemCatChem, 2014, 6, 763-766
- 7. L. Guo, X. Liu, C. Baumann and M. Rueping, Angew. Chem. Int. Ed., 2016, 55, 15415-15419
- 8. J. V. Obligacion and P. J. Chirik, Org. Lett., 2013, 15, 2680-2683.