Supporting information

for

Molybdenum(II) complexes with p-substituted BIAN ligands: synthesis, characterization, biological activity and computational study

Susana Quintal, ${ }^{\text {a,b }}$ Maria João Pires da Silva, ${ }^{\text {a }}$ Soraia R. M. Martins, ${ }^{\text {a }}$ Rita Sales, ${ }^{\text {a Vitor }}$ Félix, ${ }^{\mathrm{e}}$ Michael G. B. Drew, ${ }^{\mathrm{f}}$ Margarida Meireles, ${ }^{\text {a }}$ Ana C. Mourato, ${ }^{\text {a }}$ Carla D. Nunes, ${ }^{\text {a,d }}$ Marta S. Saraiva, ${ }^{\text {a,c }}$ Miguel Machuqueiro, ${ }^{\text {a,c }}$ Maria José Calhorda ${ }^{\mathrm{a}, \mathrm{c}^{*}}$
${ }^{a}$ Centro de Química e Bioquímica, DQB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
${ }^{b}$ Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, 24020-141 Niterói, RJ, Brazil
${ }^{\text {c }}$ BioISI -Biosystems \& Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
${ }^{\text {d }}$ Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1049-001
\section*{Lisboa, Portugal}
${ }^{e}$ Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
f Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK

	Title	Page
Figure S1	DFT optimized structures of the axial isomer of complex 3a with some relevant distances (\AA).	2
Figure S2	DFT optimized structures of the two isomers of isomer 4 (axial, top; equatorial, bottom) with some relevant distances (\AA).	2
Figure S3	HOMO-1 (top, left), HOMO (top, right) and LUMO (bottom) of complex $\left[\mathrm{Mo}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Br}(\mathrm{CO})_{2}(\mathrm{~L} 2)\right]$ (2).	3
Figure S4	HOMO (left) and LUMO (right) of complex $\left[\mathrm{Mo}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Br}(\mathrm{CO})_{2}(\mathrm{~L} 3)\right]$ (3a).	3
Figure S5	HOMO (left) and LUMO (right) of complex $\left[\mathrm{Mo}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Br}(\mathrm{CO})_{2}(\mathrm{~L} 4)\right](4)$	4
Figure S6	HOMO (left) and LUMO (right) of complex $\left[\mathrm{Mo}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Br}(\mathrm{CO})_{2}(\mathrm{~L} 5)\right]$ (5).	4
Figure S7	The HOMOs of complexes 1, 2, 3a, 4 and 5.	5
Figure S8	DFT optimized structures of the axial isomers of $\mathbf{1}$ and $\mathbf{1}^{+}$with some relevant distances (\AA).	5
Table S1	Crystal data and selected refinement details for $\mathbf{2}$ and 3c.	6

Figure S1. DFT optimized structures of the axial isomer of complex 3a with some relevant distances (\AA).

Figure S2. DFT optimized structures of the two isomers of isomer 4 (axial, top; equatorial, bottom) with some relevant distances (\AA).

Figure S3. HOMO-1 (top, left), HOMO (top, right) and LUMO (bottom) of complex $\left[\mathrm{Mo}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Br}(\mathrm{CO})_{2}(\mathrm{~L} 2)\right]$ (2).

Figure S4. HOMO (left) and LUMO (right) of complex $\left[\mathrm{Mo}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Br}(\mathrm{CO})_{2}(\mathrm{~L} 3)\right]$ (3a).

Figure S5. HOMO (left) and LUMO (right) of complex $\left[\mathrm{Mo}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Br}(\mathrm{CO})_{2}(\mathrm{~L} 4)\right]$ (4).

Figure S6. HOMO (left) and LUMO (right) of complex $\left[\mathrm{Mo}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Br}(\mathrm{CO})_{2}(\mathrm{~L} 5)\right]$ (5).

1

2

3a

4
5

Figure S7. The HOMOs of complexes 1, 2, 3a, 4 and 5.

Figure S8. DFT optimized structures of the axial isomers of $\mathbf{1}$ and $\mathbf{1}^{+}$with some relevant distances (\AA).

Table S1. Crystal data and selected refinement details for $\mathbf{2}$ and 3c.

Compound	2	3c
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrMo}$	$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{MoN}_{3} \mathrm{O}_{7} \mathrm{~S}$
Formula weight	633.38	775.59
Temperature	150(2)	293(2)
Crystal system	Triclinic	Triclinic
Space group	$P \overline{1}$	$P \overline{1}$
a / \AA A	10.2544(17)	9.9182(6)
b/Å	11.748(2)	13.4256(8)
c / \AA	12.826(2)	14.5907(8)
$\alpha /{ }^{\circ}$	78.519(9)	66.621(6)
$\beta /{ }^{\circ}$	68.136(8)	71.534(5)
$\gamma /{ }^{\circ}$	68.329(8)	72.517(5)
Volume/ \AA^{3}	1329.24(4)	1657.12(19)
Z	2	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.582	1.554
μ / mm^{-1}	2.028	0.529
$F(000)$	636.0	788.0
2θ range for data collection/ ${ }^{\circ}$	6.516 to 49.998	5.306 to 49.996
Index ranges	$\begin{aligned} & -11 \leq h \leq 12,-13 \leq k \\ & \leq 13,-15 \leq l \leq 15 \end{aligned}$	$\begin{aligned} & -11 \leq h \leq 9,-15 \leq k \\ & \leq 10,-17 \leq l \leq 14 \end{aligned}$
Reflections collected	12965	8078
Independent reflections, $R_{\text {int }}$,	4601, 0.0194,	5726, 0.0134,
$R_{\text {sigma }}$	0.0228	0.0183
Data/restraints/parameters	4601/12/379	5726/60/533
Goodness-of-fit on F^{2}	1.036	1.060
Final R indexes [$\mathrm{I} \geq 2 \sigma$ (I)]		
$R_{1}, w R_{2}$	0.0203, 0.0512	0.0248, 0.0605
Final R indexes [all data]		
$R_{1}, w R_{2}$	0.0245, 0.0529	0.0278, 0.0616
Largest diff. peak/hole / e \AA^{-3}	0.30/-0.34	0.36/-0.28

