Tellurorhodamine photocatalyzed aerobic oxidation of organosilanes and phosphines by visible-light

Irving D. Rettig, Jackson Van, Jacob Brauer, Wentai Luo, Theresa M. McCormick*

Department of Chemistry, Portland State University, Portland, Oregon, 97201, USA *<u>t.m.mccormick@pdx.edu</u>

Table of Contents

Scheme S1 – General synthesis of 1	S2
Figure S1– ¹ H NMR of 1	S5
Figure S2– 13 C NMR of 1	S 6
Figure S3- UV-Vis spectrum of 1	S 7
Figure S4 – Titration of telluroxide 2 with triphenyl phosphine	S 9
Figure S5 – Uv-Vis spectra of triphenyl silane oxidation by 2	S 10
NMR Spectroscopy and mass spectrometry general set up	S 11
Figures S6 and S7- $^{1}H/^{13}C$ NMRs of phosphine oxidation by 1	S12
Figure S8-S15 – $^{1}H/^{13}C$ NMRs silane oxidation by 1	S13-S16
Figure S16– Mass spectra phosphine oxidation control with Rose Bengal	S17
Figure S17 $-$ ¹ H/ NMR silane oxidation control with Rose Bengal	S18
Figure S18– Mass spectra for photocatalytic phosphine oxidation	S19
Figure S19-S27 – Mass spectra for silane oxidation by 1	S20-S28
Tables S1 and S2 – Calculated energies	S29

Scheme 1. Complete synthesis of 1 including intermediates 5-3.

Preparation of the Di-3-N,N-dimethylaminophenyl Ditelluride.(5)

3-Bromo-N,N-dimethylanline (6.0 g, 30.0 mmol) was added to a stirred solution of ground magnesium turnings (14.1 g, 32.0 mmol) in 30 mL of anhydrous THF. The resulting mixture was heated at reflux for 2 h and was then cooled to ambient temperature. Ground tellurium shot (3.82 g, 30.0 mmol) was added, and the reaction mixture was heated at 40 °C for 2 h. The reaction mixture was then cooled to ambient temperature and poured over 10 g of ice. Hydrochloric acid (7.8 mL of a 20% solution) was then added, and the reaction mixture was filtered through Celite to remove unreacted magnesium turnings. Air was bubbled through the reaction mixture for 1 h. The reaction mixture was extracted with ether (3 × 50 mL), and the combined organic extracts were washed with brine, dried over MgSO₄, and concentrated. The crude product was recrystallized from methanol to give 5.78 g (33%) of a red crystalline solid, ¹H NMR [400 MHz, CDCl₃] δ 7.16 (m, 4 H), 7.00 (t, 2 H, J = 7.9), 6.58 (d×d, 2 H, J = 2.0, 7.2 Hz), 2.90 (s, 12 H).

Preparation of N,N-Diethyl 4-N,N-Dimethylamino-2-[3-(N,N-

dimethylamino)phenyltelluro]benzamide. (4)

tert-Butyllithium (1.7 M in cyclohexane, 4.6 mL, 7.1 mmol) was added dropwise to a stirred solution of TMEDA (0.82 g, 7.1 mmol) and N,N-diethyl 4-N',N'-dimethylaminobenzamide (1.9 g, 8.4 mmol) in 99 mL of THF at -78 °C. The resulting solution was stirred at -78 °C for 0.5 h. A solution of di-3- (N,N-dimethylamino)phenyl ditelluride (1.4 g, 6.4 mmol) in 23 mL of THF was then added dropwise. The resulting mixture was stirred at -78 °C for 1.0 h and was then warmed to ambient temperature for 14 h. The reaction mixture was poured into 150 mL of saturated NaCl, and the products were extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated. The resulting orange oil was

purified via column chromatography on SiO₂ eluted with 30% hexanes in ethyl acetate to give 0.86 g (20.4%) as an orange oil, which was used without further purification: ¹H NMR [400 MHz, CDCl₃] δ 7.43 (d, 1 H, J = 2.1 Hz), 7.38 (br d, 1 H, J = 7.3 Hz), 7.12 (t, 1 H, J = 7.8 Hz), 6.83 (d×d, 1 H, J 2.3, 8.3 Hz), 6.78 (d, 1 H, J = 4.7 Hz), 6.65 (d×d, 1 H, J = 1.1, 7.48 Hz), 6.56 (d×d, 1 H, J = 2.4, 8.5 Hz), 3.59 (q, 4 H, J = 7.0 Hz), 3.02 (s, 6 H), 2.84 (s, 6 H), 1.35 (t, 6 H, J = 7.0 Hz).

Preparation of 2,7-Bis(N,N-dimethylamino)telluroxanthen-9-one. (3)

Phosphorus oxychloride (2.2 mL, 21.6 mmol) was added dropwise to a solution of N,N-diethyl 4-N,N- (dimethylamino)-2-(3-N,N-dimethylaminophenyltelluro)benzamide (0.85 g, 1.8 mmol) in anhydrous triethylamine (3.0 mL, 21 mmol) and anhydrous CH₂Cl₂ (36 mL) at 0 °C. After addition was complete, the reaction mixture was stirred at ambient temperature for 48 h. A solution of 3 M NaOH (36 mL) was added, and the resulting mixture was stirred for 1 h at ambient temperature. The products were extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated. The resulting yellow solid was recrystallized from acetonitrile/ether to give 0.0585 g (11%) as a yellow powder: ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, 2 H, J = 9.1 Hz), 6.78 (d, 2 H, J = 2.5 Hz), 6.74 (d×d, 2 H, J = 2.6, 9.1 Hz), 3.05 (s, 12 H).

Preparation of 3,6-Bis(dimethylamino)-9-(2,4,6-trimethylphenyl)-9H-telluroxanthen-9-ylium Hexafluorophosphate (1) 2-Bromomesitylene (0.3 M, 4.3 mmol) was added dropwise to a solution containing solid magnesium turnings (0.15 g, 5.0 mmol) that had been coated with liquid bromine in 10 mL of anhydrous THF. The solution was stirred for 2 hours at ambient temperature. When most of the magnesium turnings had been consumed, the reaction mixture was transferred by canula to a stirring solution of 3,6-bis(dimethylamino)-9H-telluroxanthen-9-one (**4**) (4.0 g, 7.8 mmol) in 15 mL of anhydrous THF. The resultant mixture was heated to reflux for 24 hours, then cooled to ambient temperature and quenched with 0.4 mL of glacial acetic acid. The product was allowed to precipitate for 12 hours after the addition of 10% aqueous HPF₆. The precipitate was collected and rinsed with water (10 mL x 3) and diethyl ether (10 mL x 3) to give 63.0 mg of **1** (35% yield) as a forest green solid and its spectroscopic properties were identical to those reported for **1**.¹; ¹H NMR (400 MHz, methanol-d4) δ 7.89 (s, 2 H), 7.52 (d, 2 H, J = 9.70 Hz), 7.12 (s, 2 H), 6.94 (dd, 2 H, J = 1.18, 9.72 Hz), 3.25 (s, 12 H), 2.43 (s, 3 H), 1.84 (s, 6 H); ¹³C NMR (600 MHz, methanol-d4) δ 166.2, 153.8,140.1, 139.8, 136.6, 133.0, 129.7, 122.4, 117.1, 116.6, 98.0, 40.6, 21.2,19.6; λ max in MeOH, 598 nm (8.6 x 10⁵ M⁻¹cm⁻¹).

Me

Figure S3. Uv-Vis absorbance spectrum of $\mathbf{1}$ (1.0 x 10⁻⁵ M) in methanol.

Figure S4. Titration of **2** (5.4 x 10^{-6} M) with half equivalents of triphenyl phosphine (Ph₃P) in 50:50 water/methanol. Samples were allowed to stir for 2 hr in the dark before spectra were obtained.

Figure S5. Absorption spectra of **2** (5.4 x 10^{-6} M) with 100 eq of triphenyl silane (Ph₃P) in 50:50 water/methanol. Spectra acquired every 15 min for 11 hrs and was stirred in the dark between scans.

NMR Spectroscopy and mass spectrometry general set up

Phosphines and silanes were oxidized catalytically using 5 mol % of **1** in methanol-d4. Samples were prepared under oxygen atmosphere with **1** ($3.3 \times 10^{-3} \text{ M}$), 20 eq of reductant (phosphine or silane) ($6.6 \times 10^{-2} \text{ M}$), 5% water, and cyclohexane as an internal standard. GCMS samples were prepared at the same concentrations in non-deuterated methanol with 5% **1** and 5% water. Samples were diluted to 100 ng/uL for analysis.

Figure S6. ¹H NMR spectrum of the triphenyl phosphine reaction mixture at 0 and 18 hours of irradiation.

Figure S7. ¹³C NMR spectrum of triphenyl phosphine reaction mixture at 0 and 18 hours of irradiation.

Figure S8. ¹H NMR spectrum of triphenyl silane reaction mixture at 0 and 18 hours of irradiation.

Figure S9. ¹³C NMR spectrum of triphenyl silane reaction mixture at 0 and 24 hours of irradiation.

18 hours

Figure S10. ¹H NMR spectrum of methyl diphenyl silane reaction mixture at 0 and 18 hours of irradiation.

Figure S11 ¹³C NMR spectrum of methyl diphenyl silane reaction mixture at 0 and 18 hours of irradiation.

Figure S12. ¹H NMR spectrum of dimethyl phenyl silane reaction mixture at 0 and 18 hours of irradiation.

Figure S13. ¹³C NMR spectrum of dimethyl phenyl silane reaction mixture at 0 and 18 hours of irradiation.

Figure S14. ¹H NMR spectrum of triethyl silane reaction mixture at 0 and 18 hours of irradiation.

Figure S15. ¹³C NMR spectrum of triethyl silane reaction mixture at 0 and 18 hours of irradiation.

Figure S17. Control ¹H NMR spectrum of triethyl silane with Rose Bengal, 5% water, and cyclohexane in MeOD at 0 and 24 hours of irradiation showing no silanol formation.

Figure S22. Mass spectrum of triethyl silanol photocatalytically generated by 1 in methanol with b) compared to a databasematched standard.

and b) the database-matched spectrum.

Table S1. Relative energy of optimized reactants, intermediates and products. Energies were calculated in kcal/mol from Hartree (627.5 kcal·mol-1 /H). The energy values were taken from the free energy corrected values obtained from frequency calculations.

		Energy	Energy
Compound	Compound name	(Hartree)	(kcal/mol)
Te-1	telluride	-1125.226	-706089.3416
Te-2	telluroxide	-1200.409	-753267.447
Te-A	dihydroxy tellurane	-1276.829	-801221.599
Te-P	(monotrimethylphospho)tellurane	-1661.41	-1042549.881
Te-Si	(monotrimethylsilyl)tellurane	-1610.171	-1010396.835
H ₂ O	water	-76.435	-47963.594
PMe ₃	trimethylphosphine	-461.0201	-289294.401
HSiMe ₃	trimethylsilane	-409.778	-257139.299
OPMe ₃	trimethylphosphine oxide	-536.295	-336530.343
HOSiMe ₃	trimethylsilanol	-485.0581	-304378.380

Table S2. Calculated Gibbs free energy (ΔG) values in kcal/mol for the balanced reaction for each step in the oxidation of silane and phosphine.

	ΔG
Reaction Scheme	(kcal/mol)
$Te-2 + H_2O \rightarrow Te-A$	9.442128
$Te-A + HSiMe_3 \rightarrow Te-Si + H_2O$	0.469377
$Te-Si \rightarrow Te + HOSiMe_3$	-70.885927
$Te-2 + PMe_3 \rightarrow Te-P$	11.967224
$Te-P \rightarrow Te + OPMe_3$	-69.804101

 Kryman, M. W.; Schamerhorn, G. A.; Yung, K.; Sathyamoorthy, B.; Sukumaran, D. K.; Ohulchanskyy, T. Y.; Benedict, J. B.; Detty, M. R. Organotellurium Fluorescence Probes for Redox Reactions: 9 -Aryl- 3,6-diaminotelluroxanthylium Dyes and Their Telluroxides. *Organometallics* 32, 4321–4333 (2013).