Supporting Information

Mononuclear Lanthanide Complexes Assembled from a Tridentate NNO Donor Ligand: Design of a Dy^{III} Single-Ion Magnet

Pankaj Kalita,^a Amit Malakar,^{a,d} Joydeb Goura,^{a,c} Subhashree Nayak,^aJ. M. Herrera^b Enrique

Colacio*^b and Vadapalli Chandrasekhar*^{c,d}

^aSchool of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni, Khurda - 752050, Odisha, India

^bDepartamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avenida

de Fuentenueva s/n, 18071 Granada, Spain

^cDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India

^dTata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India

AUTHOR EMAIL ADDRESSES: <u>vc@iitk.ac.in</u>; <u>vc@tifrh.res.in</u> ecolacio@ugr.es

Contents

1. Molecular structure of Dy5 Complex	S3-S4
2. Synthesis of HL	S4-S5
3. ¹ H and ¹³ C{ ¹ H} NMR spectra of HL	S5-S6
4. ESI-MS of HL	S6
5. Molecular structure of 1 , 2 and 4	S7-S8
6. H-bonded structure of complex 3	S8
7. ESI-MS of complexes 1, 3, and 4	S8-S11
8. SHAPE analysis	S12
9. Table of selected bond lengths and angles	S12-S13
10. Field dependence of the magnetization	S14
11. Temperature dependence of $\chi'_{M}T$ at different frequencies for 3	S14
12. Powder XRD pattern of 3'	S15-S16
13. Temperature and frequency dependence of χ '' _M for 3	S15-S16
14. Temperature dependence of χ''_{M} for 3'	S16

Figure S1. Molecular structure of complex $[Dy_5(L)_4(NO_3)_5(HOMe)_2(O_2)_2(H_2O)_4]^{2+}$ with thermal ellipsoids of 30 % probability level (H-atoms and counter NO_3^- anions are omitted for clarity)

Table 1. Crystal data and structure refinement for Dy₅ complex

Empirical formula	C50H60Dy5N19O37
Formula weight	2331.67
Temperature/K	120.00(10)
Crystal system	Trigonal
Space group	P3121
a/Å	14.6240(4)
b/Å	14.6240(4)
c/Å	31.1799(11)
α/°	90
β/°	90
$\gamma/^{\circ}$	120
Volume/Å ³	5774.8(4)
Z	3
$\rho_{calc}g/cm^3$	2.011

μ/mm^{-1}	4.893
F(000)	3357.0
Crystal size/mm ³	$0.18 \times 0.15 \times 0.11$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.572 to 58.25
Index ranges	$-19 \le h \le 15, -16 \le k \le 19, -41 \le l \le 42$
Reflections collected	52102
Independent reflections	9359 [$R_{int} = 0.0986$, $R_{sigma} = 0.0810$]
Data/restraints/parameters	9359/46/404
Goodness-of-fit on F ²	1.024
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0535, wR_2 = 0.1366$
Final R indexes [all data]	$R_1 = 0.0744, wR_2 = 0.1455$
Largest diff. peak/hole / e Å ⁻³	2.32/-2.18
Flack parameter	0.010(12)
CCDC Number	1891540

Synthesis of Ligand HL

A methanolic solution of 2-hydrazino pyridine (600 mg, 5.45 mmol) was taken in a 100 ml round bottom flask and stirred for ten minutes. To it a methanolic solution of 2-hydroxy-5-nitro benzaldehyde (900 mg, 5.38 mmol) was added. The solution was then heated to reflux for 6 hours. During this time a yellow colored precipitate was obtained. After cooling, the precipitate was filtered out and washed with cold methanol followed by diethyl ether. The precipitate was finally dried under vacuum and the product was obtained in 92% yield (1.3 g). The melting point and other experimental characterization data are as follows: M.P.: 240 °C. IR (KBr v/cm⁻¹): 1606(s), 1520(m), 1482(m), 1442(s), 1348(s), 1303(s), 1170(m), 1096(m), 994(w), 924(m), 828(m), 772(m), 718(w), 638(w). ¹H NMR ([D6]DMSO, δ , ppm): 11.09 (s, 1H, N-H), 8.49 (d, 1H, Ar-H), 8.25 (s, 1 H, imine H), 8.09 (dd, 1H, Ar-H), 7.66-7.60 (m, 1H, Ar-H), 7.10 (d, 1H, Ar-H), 7.00 (d, 1H, Ar-H), 6.77-6.73 (m, 1H, Ar-H). ESI-MS (m/z) (M + H⁺) = 259.0881.

Scheme S1. Synthesis of the ligand HL.

Figure S2. ¹H NMR spectra of ligand HL in DMSO-d₆ solvent. (The peaks observed at 3.33 ppm and 2.45 ppm is due to the residual solvents)

Figure S3. ${}^{13}C{}^{1}H$ NMR spectra of ligand HL in a DMSO-d₆ solvent. (The peak observed at 40

ppm is due to the residual solvent)

Figure S4. ESI-MS of HL.

Figure S5. Molecular structure of complex **1**, thermal ellipsoids of 50 % probability level and solvent molecules are omitted for clarity.

Figure S6. Molecular structure of complex **2**, thermal ellipsoids of 50 % probability level and solvent molecules are omitted for clarity.

Figure S7. Molecular structure of complex **4**, thermal ellipsoids of 50 % probability level and solvent molecules are omitted for clarity.

Figure S8. H-bonded one dimensional Zig-Zag chain of complex 3.

Figure S9. (*Left*) Full range ESI-MS spectrum of complex **1**. (*Right*) Experimental and Simulated pattern of $[\{(L)_2Gd(NO_3)\}_2]^{2^-}$.

Figure S10. (*Left*) Full range ESI-MS spectrum of complex **3**. (*Right*) Experimental and Simulated pattern of $[(L)_2Dy]^+$.

Figure S11. (*Left*) Full range ESI-MS spectrum of complex **4**. (*Right*) Experimental and Simulated pattern of $[(L)_2Ho]^+$.

G 1		Structure [†]											
Complex	ED 0	ODV 9	UDDV	ITC 0	ICCU	CCU	ICCAD	CEADD	ITCTD	тстр	ITDIC	IIII O	MEE
	EP-9	OP 1-8	прр і	JIC-9	JCCU-		JUSAP	CSAPK-	JICIP		JIDIC	пп-9	
			-9		9	-9	R-9	9	R-9	R-9	-9		9
1_ Gd	36.148	20.191	18.225	17.214	9.234	6.930	3.577	1.849	4.111	1.520	11.601	10.296	2.147
CShM													
2 _Tb	35.256	20.164	17.958	16.274	9.613	7.989	2.811	2.051	4.027	1.373	12.029	10.340	2.135
CShM													
3_ Dy	36.529	20.362	18.298	17.025	9.252	6.966	3.442	1.822	3.960	1.488	11.897	10.246	2.198
CShM													
4_ Ho	36.659	20.391	18.384	17.016	9.307	7.072	3.414	1.793	3.894	1.405	11.808	10.338	2.154
CShM													
EP-0 - Enneagon (D0h): OPV-0 - Octagonal pyramid (C8v): HRPV-0 - Hentagonal bipyramid (D7h): ITC-0 - Johnson triangular cupo													

Table S1. Continuous Shape Measures (CShM) calculations for Ln^{III}

† *EP-9* = Enneagon (D9h); OPY-9 = Octagonal pyramid (C8v); HBPY-9 = Heptagonal bipyramid (D7h); JTC-9 = Johnson triangular cupola J3 (C3v); JCCU-9= Capped cube J8 (C4v); CCU-9 = Spherical-relaxed capped cube (C4v); JCSAPR-9 = Capped square antiprism J10 (C4v); CSAPR-9 = Spherical capped square antiprism (C4v); JTCTPR-9 = Tricapped trigonal prism J51 (D3h); TCTPR-9 = Spherical tricapped trigonal prism (D3h); JTDIC-9 = Tridiminished icosahedron J63 (C3v); HH-9 = Hula-hoop (C2v); MFF-9 = Muffin (Cs)

Table S2. Selected bond lengths (Å) and angles (°) of complexes 1, 2, and 4.

_	Bond lengths (Å)	Bond angles (Bond angles (°)		
		O1–Gd1–O5	117.65(8)		
		O1–Gd1–O3	67.90(8)		
		O1–Gd1–O4	144.51(9)		
		O1–Gd1–N1	70.21(9)		
		O2-Gd1-O1	127.46(8)		

			O2Gd1O5	114.55(8)
	Gd1–O1	2.331(2)	O2-Gd1-O3	74.95(9)
O 2	Gd1–O2	2.285(2)	O2-Gd1-O4	71.32(9)
	Gd105	2.539(2)	O2-Gd1-N6	124.72(9)
	Gd1–O3	2.437(2)	O5-Gd1-N1	67.82(9)
N4 04 N3	Gd104	2.472(3)	O5-Gd1-N3	69.79(9)
03	Gd1–N1	2.555(3)	$O_{3}-G_{d1}-O_{5}$	42.28(9)
Gd1	Gd1-N3	2.555(3) 2 554(3)	$O_3 - G_{d1} - O_4$	12.20(9) 144.49(9)
	Gd1_N4	2.551(3)	03-Gd1-N1	81 43(9)
205	Gd1 N6	2.555(5) 2.563(3)	$O_1 G_1 O_5$	50.96(8)
N6	Gui-No	2.303(3)	04-001-03	117.08(0)
			O4-Out-N1	117.90(9) 94.97(0)
61			O4-Gal-N5	84.87(9)
			NI-GdI-N6	95.89(9)
			N3–Gd1–N1	64.06(9)
Distorted Spherical triggened			N3–Gd1–N6	141.44(9)
triage al prisme accomptant of Callin			N4Gd1N1	145.75(9)
trigonal prism geometry of Gal in			N4-Gd1-N3	147.84(9)
complex 1				
			03–1b1–N6	94.34(7)
			O3-Tb1-N1	81.02(7)
			O3–Tb1–O4	141.61(6)
			N6–Tb1–O4	124.04(7)
			N6–Tb1–N3	147.67(6)
01			N6-Tb1-N4	64.32(7)
	Tb1–O3	2.438(2)	O1–Tb1–O3	68.10(6)
	Tb1–N6	2.541(2)	O1–Tb1–N6	76.76(6)
NI 05 03	Tb1–O1	2.315(2)	O1-Tb1-N1	70.17(6)
N6	Tb1–N1	2.539(2)	01–Tb1–N4	68.69(6)
ТЫ	Tb1–O4	2.552(2)	N1–Tb1–N6	145.92(6)
	Tb1–O5	2.460(2)	N1-Tb1-O4	67.79(7)
	Tb1–O2	2.263(2)	N1–Tb1–N3	64.42(6)
N3 002 N4	Th1-N3	2.541(2)	N1-Tb1-N4	9540(7)
	$Tb1_N4$	2.511(2) 2 559(2)	O4Tb1-N4	71.93(7)
		2.557(2)	04 101 N4	85 15(7)
Distorted Spherical tricapped			O_5 Tb1 N0	117.86(7)
trigonal prism geometry of <i>Tb1</i> in			05-101-N1	50.86(6)
complex 2			03-101-04 02 Th1 02	50.80(0)
-			02-101-05	74.00(0)
			$O_2 = 101 - 100$	/0.04(0)
			02-101-01	127.18(6)
			U2-IbI-NI	138.52(6)
			N3-Tb1-O4	69.40(7)
			N3–Tb1–N4	140.85(7)
			O1 Ho1 O4	71.3(4)
			O1 Ho1 N7	93.9(4)
			O1 Ho1 N6	77.1(4)
			O1 Ho1 N3	126.2(4)

			O2-Ho1-O1	126.23(5)	
			O2-Ho1-O3	74.35(5)	
			O2-Ho1-O4	114.77(5)	
			O2-Ho1-O5	71.91(6)	
@ 01			O1-Ho1-O3	67.78(5)	
			O1-Ho1-O4	118.72(5)	
04 N6	Ho1–O2	2.246(14)	O1-Ho1-O5	144.32(6)	
	Ho1–O1	2.309(14)	O1-Ho1-N3	127.00(5)	
	Ho1–O3	2.411(15)	O3-Ho1-O4	141.48(6)	
03	Ho1–O4	2.532(16)	O3-Ho1-O5	144.47(5)	
N1 Ho1	Ho1–O5	2.439(16)	O3-Ho1-N3	77.59(6)	
	Ho1–N3	2.521(18)	O4–Ho1–N6	71.62(6)	
05	Ho1–N4	2.516(18)	O5–Ho1–O4	51.20(5)	
	Ho1–N6	2.537(19)	O5–Ho1–N3	84.35(6)	
N3	Ho1–N1	2.514(18)	N3-Ho1-O4	69.10(6)	
02			N3-Ho1-N6	140.22(6)	
			N4-Ho1-O4	124.02(6)	
Distorted Spherical tricapped			N4–Ho1–N3	147.45(6)	
trigonal prism geometry of <i>Ho1</i> in			N1–Ho1–N3	65.05(6)	
complex 3			N1–Ho1–N4	145.64(6)	
L. L					

Figure S12. Field dependence of the magnetization at 2 K for complexes 1-4.

Figure S13. Temperature dependence of $\chi'_{M}T$ at different frequencies for 3.

Figure S14. powder XRD pattern of 3' (The simulated pattern is obtained from SCXRD struture

Figure S15. Temperature dependence of χ "_M at different frequencies for 3.

Figure S16. Frequency dependence of χ ["]_M at different temperatures for 3.

Figure S17. Temperature dependence of χ ^{"M} at different frequencies for 3'.