

Supporting Information

Fig. S1 (a) PXRD patterns of simulated, as synthesized Eu-MOF and after immersing in water and bloiling water for 24 hours. (b) TG and DTA curves and (c) ion flow intensity in TG-MS measurement for Eu-MOF.

Fig. S2 PXRD patterns of Eu-MOF after immersing in different solvents for 24 h.

Fig. S3 The emission spectra of Eu-MOF excited by 320 nm (solid state, r. t.).

Fig. S4 The PXRD patterns of Eu-MOF after immersed in different metal solutions (1 mM). (* represents the new peak)

Fig. S5 The initial slopes fitting of adsorption isotherms of CO_2 and N_2 for Eu-MOF at 273 K (a) and 298 K (b), respectively.

Fig. S6 The enthalpy of adsorption (Q_{st}) curve of CO₂ for Eu-MOF.

Complex	Eu-MOF
Temperature	293 K
Chemical Formula	C ₂₄ H ₂₁ EuN ₂ O ₉ +[S]
Formula Weight	633.40
crystal system	Triclinic
space group	P -1
<i>a</i> (Å)	10.0077(6)
<i>b</i> (Å)	10.3815(5)
<i>c</i> (Å)	15.9271(7)
α (deg)	71.109(4)
β (deg)	85.541(4)
γ (deg)	64.379(5)
$V(Å^3)$	1407.91(12)
Ζ	2
D_{Calcd} (g cm ⁻³)	1.494
μ (mm ⁻¹)	16.372
Ref. collected	8447
Independent ref.	4680
R _{int}	0.0560
GOF	1.031
$R1^{a} [I > 2\sigma(I)]$	0.0567
$wR_2^{b}[I > 2\sigma(I)]$	0.1493

Table S1 Crystal data and structure refinement for Eu-MOF.

^a $R_1 = \sum (||F_0| - |F_c||) / \sum |F_0|$; ^b $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$

Table S2 Lifetimes of Eu-MOF in different acidic solution.

	pH=3	pH=4	pH=5	pH=6	pH=7
τ/µs	358	352	357	348	308

MOF	Selectivity ^a	Selectivity ^b	$S_{BET}^{c}(m^2/g^{-1})$	CO ₂ ^d (wt%)	Q _{st} (CO ₂) KJ/mol	References
La-TTCA	-/-	940/188	-	13.9/10.5	32.8 to 35.4	S1
Eu-MOF	44.9/26.1	109.4/28.7	209.7	5.7/4.1	9.2 to 35.6	This work
La-BTN	-/-	93 to 38/-	-	17.2/-	26	S2
Eu-BDC	-/57.4	-/72.5	124	-/3.6	-	S 3
Tb-FDA	-/-	-/36	1005.6	-/12	-	S4
Y-TPO	-/-	22.0/28.2	692.0	13.1/8.5	-	S5
Eu-TPO	-/-	20.9/25.6	495.5	10.5/6.2	-	S5
Pr-LOF	18.6/-	-/-	484	7.1/-	-	S6
Eu- <i>p</i> -CDC	-/-	-/8	108	-/1.3	-	S7

Table S3 CO₂ adsorption performance and adsorption enthalpy for some similar lanthanidecarboxylate MOFs.

For simplicity, the MOF in the table uses a proxy for instead. ^aSelectivity of CO_2/N_2 calculated from the initial slope at 1 atm and 273/298 K, respectively. ^bSelectivity of CO_2/N_2 calculated from IAST method at 1 atm and 273/298 K, respectively. ^c Brunauer–Emmett–Teller (BET) surface area. ^d CO₂ uptake at 273/298 K and 1 atm.

References

- S1 Y. N. Gong, P. Xiong, C. T. He, J. H. Deng and D. C. Zhong, *Inorg. Chem.*, 2018, 57, 5013.
- S2 J. Duan, M. Higuchi, R. Krishna, T. Kiyonaga, Y. Tsutsumi, Y. Sato, Y. Kubota, M. Takata and S. Kitagawa, *Chem. Sci.*, 2014, 5, 660.

S3 W. M. Liao, H. T. Shi, X. H. Shi and Y. G. Yin, Dalton Trans., 2014, 43, 15305.

- S4 T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata and H. Nishihara, J. Am. Chem. Soc., 2013, 135, 2462.
- S5 Z. J. Lin, Z. Yang, T. F. Liu, Y. B. Huang and R. Cao, Inorg. Chem., 2012, 51, 1813.
- S6 Z. Lin, R. Zou, W. Xia, L. Chen, X. Wang, F. Liao, Y. Wang, J. Lin and A. K. Burrell, J. Mater. Chem., 2012, 22, 21076.
- S7 S.-L. Huang, Y.-J. Lin, W.-B. Yu and G.-X. Jin, ChemPlusChem, 2012, 77, 141.