Supporting information

Highly Active Rare-Earth Metal Catalysts for Heteroselective Ring-

Opening Polymerization of Racemic Lactide

Yu Pan,^a Wenqiang Li,^a Ning-Ning Wei,^b Yat-Ming So,^c Xiaoling Lai,^a Yang Li,*^a Kang

Jiang,^a Gaohong He*^a

^{*a*} State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China.

^b School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China.

^c Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

*To whom correspondence should be addressed: E-mail: <u>chyangli@dlut.edu.cn</u>, <u>hgaohong@dlut.edu.cn</u>

Table of Contents

The Plot of molecular weights (M_n) and molecular weight distributions (M_w/M_n) against cor	nversion
for ROP of <i>rac</i> -LA using complex 2d (Y)	··Fig. S1
The ¹ H NMR spectra of Sc complexes 1a-f Final Science	g. S2-S7
The ¹ H NMR spectra of Y complexes 2a-d Fig	. S8-S11
The ¹³ C NMR spectra of Sc complexes 1a-f Fig.	S12-S17
The ¹³ C NMR spectra of Y complexes 2a-d Fig.	S18-S21
The ^1H and $^1\text{H}\{^1\text{H}\}$ NMR spectra of the resultant PLAs in Table 1 \cdots $\mathbf{Fig.}$	S22-S41
The ¹ H NMR spectra of the resultant PLAs in Table 2····· Fig.	S42-S46
The ^1H and $^1\text{H}\{^1\text{H}\}$ NMR spectra of the resultant PLAs in Table 3Fig.	S47-S58
The SEC traces of the resultant PLAs in Table 1Fig.	S59-S68
The SEC traces of the resultant PLAs in Table 2	Fig. S69
The SEC traces of the resultant PLAs in Table 3Fig.	S70-S75

Fig. S1. Plot of molecular weights (M_n) and molecular weight distributions (M_w/M_n) against conversion for ROP of *rac*-LA using complex **2d** (Y) at [*rac*-LA]/[cat.] = 400 in THF.

Fig. S2. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of L^a-Sc(CH₂SiMe₃)₂THF (**1a**): δ 8.19 (dd, *J* = 8.2, 1.8 Hz, 1H, *o*-Ph*H*N), 7.02 (dd, *J* = 7.3, 1.9 Hz, 1H, *p*-Ph*H*N), 6.97 – 6.86 (m, 3H, *m*-NPhMe₂ and *m*-Ph*H*N), 6.50 (dd, *J* = 8.1, 6.9 Hz, 1H, *p*-NPhMe₂), 6.04 (d, *J* = 8.7 Hz, 1H, *m*-Ph*H*N), 4.80 – 4.68 (m, 1H, OCH₂C*H*N), 4.02 (t, *J* = 8.2 Hz, 1H, OCH₂CHN), 3.72 – 3.62 (m, 2H, THF), 3.56 (dd, *J* = 8.4, 3.4 Hz, 1H, OCH₂CHN), 3.18 (q, *J* = 7.1, 6.5 Hz, 2H, THF), 2.15 (s, 3H, NPh*Me*₂), 2.11 (s, 3H, NPh*Me*₂), 1.26 (d, *J* = 6.5 Hz, 3H, NCH*Me*), 1.25 – 1.14 (m, 4H, THF), 0.21 (s, 22H, CH₂Si*Me*₃) ppm.

88.88 88.05 88.07 88.05 89.05 80.05

Fig. S3. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of **L**^b-Sc(CH₂SiMe₃)₂THF (**1b**): δ 8.07 (dd, *J* = 8.2, 1.8 Hz, 1H, *o*-Ph*H*N), 7.21 (d, *J* = 3.6 Hz, 3H, *p*-Ph*H*N and *m*-NPhCHMe₂), 6.85 (ddd, *J* = 8.7,6.8, 1.8 Hz, 1H, *m*-Ph*H*N), 6.45 (ddd, *J* = 8.0, 6.7, 1.1 Hz, 1H, *p*-NPhCHMe₂), 6.08 (dd, *J* = 8.9, 1.1 Hz, 1H, *m*-Ph*H*N), 4.59 (dddd, *J* = 8.5, 6.6, 4.3, 1.9 Hz, 1H, OCH₂C*H*N), 3.94 (t, *J* = 8.5 Hz, 1H, OCH₂CHN), 3.63 (q, *J* = 7.2, 6.8 Hz, 2H, THF), 3.47 (dd, *J* = 8.5, 4.8 Hz, 1H, OCH₂CHN), 3.41 – 3.29 (m, 3H, THF and NPhCHMe₂), 3.29 – 3.19 (m, 1H, NPhCHMe₂), 1.33 (d, *J* = 6.9 Hz, 3H, NPhCH*Me*₂), 1.26 (m, 4H, THF), 1.22 (d, *J* = 6.6 Hz, 3H, NPhCH*Me*₂), 1.07 (d, *J* = 6.7 Hz, 3H, NPhCH*Me*₂), 0.96 (d, *J* = 6.7 Hz, 3H, NCH*Me*), 0.25 – 0.19 (br, 2H, CH₂SiMe₃), 0.16 (s, 18H, CH₂Si*Me*₃), 0.05 (br, 2H, CH₂SiMe₃) ppm.

Fig. S4. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of L^c-Sc(CH₂SiMe₃)₂THF (**1c**): δ 8.18 (dd, J = 8.1, 1.9 Hz, 1H, o-PhHN), 7.07 – 7.01 (m, 1H, p-PhHN), 6.98 – 6.87 (m, 3H, m-NPhMe₂ and mPhHN), 6.49 (t, J = 7.5 Hz, 1H, p-NPhMe₂), 6.07 (d, J = 8.8 Hz, 1H, mPhHN), 4.86 (tq, J = 9.7, 5.4, 4.4 Hz, 1H, OCH₂CHN), 4.05 (d, J = 6.5 Hz, 2H, OCH₂CHN), 3.72 (t, J = 6.8 Hz, 2H, THF), 3.15 (q, J = 7.4, 6.0 Hz, 2H, THF), 2.76 – 2.59 (m, 1H, NCHCHMe₂), 2.15 (s, 6H, NPhMe₂), 1.24 (tq, J = 13.4, 6.5 Hz, 4H, THF), 0.74 (d, J = 6.8 Hz, 3H, NCHCHMe₂), 0.68 (d, J = 6.9 Hz, 3H, NCHCHMe₂), 0.20 (s, 18H, CH₂SiMe₃), 0.14 – 0.02 (br, 2H, CH₂SiMe₃), -0.10 (br, 2H, CH₂SiMe₃) ppm.

Fig. S5. ¹H NMR spectrum (500 MHz, C_6D_6 , 25°C) of L^d -Sc(CH₂SiMe₃)₂THF (**1d**): δ 8.01 (dd, J = 8.2, 1.8 Hz, 1H, o-PhHN), 7.30 – 7.19 (m, 3H, p-PhHN and m-NPhCHMe₂), 6.86 (ddd, J = 8.7, 6.8, 1.8 Hz, 1H, m-PhHN), 6.42 (ddd, J = 8.0, 6.8, 1.1 Hz, 1H, p-NPhCHMe₂), 6.17 (dd, J = 8.7, 1.1 Hz, 1H, m-PhHN), 4.66 (ddd, J = 9.0, 4.4, 3.5 Hz, 1H, OCH₂CHN), 3.93 (t, J = 9.1 Hz, 1H, OCH₂CHN), 3.88 (dd, J = 9.2, 4.5 Hz, 1H, OCH₂CHN), 3.65 – 3.58 (m, 2H, THF), 3.55 (q, J = 6.8 Hz, 1H, NPhCHMe₂), 3.51 – 3.43 (m, 2H, THF), 3.10 (p, J = 6.9 Hz, 1H, NPhCHMe₂), 2.34 (dd, J = 6.9, 3.5 Hz, 1H, NCHCHMe₂), 1.48 (d, J = 7.0 Hz, 3H, NPhCHMe₂), 1.40 – 1.31 (m, 4H, THF), 1.25 (d, J = 6.9 Hz, 3H, NPhCHMe₂), 0.18 – 0.10 (m, 4H, CH₂SiMe₃), 0.15 (s, 18H, CH₂SiMe₃) ppm.

Fig. S6. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of L^e-Sc(CH₂SiMe₃)₂THF (**1e**): δ 8.26 (dd, J = 8.1, 1.8 Hz, 1H, *o*-Ph*H*N), 7.15 – 7.07 (m, 4H, NCH*Ph*), 7.02 (ddt, J = 8.8, 7.2, 1.7 Hz, 2H, *p*-Ph*H*N and *m*-NPhMe₂), 6.97 (ddd, J = 8.7, 6.7, 1.8 Hz, 1H, *m*-NPhMe₂), 6.94– 6.86 (m, 2H, NCH*Ph* and *m*-Ph*H*N), 6.52 (dd, J = 8.1, 6.8 Hz, 1H, *p*NPhMe₂), 6.15 (d, J = 8.8 Hz, 1H, *m*-Ph*H*N), 5.87 (dd, J = 8.5, 2.5 Hz, 1H, OCH₂CHN), 4.37 (t, J = 8.5 Hz, 1H, OCH₂CHN), 3.95 (dd, J = 8.4, 2.6 Hz, 1H, OCH₂CHN), 3.36 (s, 4H, THF), 2.15 (s, 3H, NPh*Me*₂), 2.11 (s, 3H, NPh*Me*₂), 1.21 – 1.12 (m, 4H, THF), 0.15 (s, 18H, CH₂Si*Me*₃), -0.17 (br, 4H, CH₂SiMe₃) ppm.

Fig. S7. ¹H NMR spectrum (500 MHz, C_6D_6 , 25°C) of L^f-Sc(CH₂SiMe₃)₂THF (**1f**): δ 8.10 (dd, J = 8.2, 1.8 Hz, 1H, o-PhHN), 7.25 – 7.17 (m, 2H, NCH*Ph*), 7.14 – 7.05 (m, 5H, NCH*Ph and p*-PhHN and *m*-NPhCHMe₂), 7.05 – 7.01 (m, 1H, *m*-NPhCHMe₂), 6.91 (ddd, J = 8.7, 6.7, 1.8 Hz, 1H, *m*-PhHN), 6.51 – 6.41 (m, 1H, *p*-NPhCHMe₂), 6.22 – 6.16 (m, 1H, *m*-PhHN), 5.70 (dd, J = 9.0, 4.2 Hz, 1H, OCH₂CHN), 4.28 (t, J = 8.8 Hz, 1H, OCH₂CHN), 3.88 (dd, J = 8.7, 4.3 Hz, 1H, OCH₂CHN), 3.67 – 3.33 (m, 5H, THF and NPhCHMe₂), 3.24 – 3.06 (m, 1H, NPhCHMe₂), 1.38 (d, J = 6.9 Hz, 3H, NPhCH*Me*₂), 1.33 – 1.25 (m, 4H, THF), 1.20 (d, J = 6.6 Hz, 3H, NPhCH*Me*₂), 1.10 (d, J = 6.9 Hz, 3H, NPhCH*Me*₂), 0.95 (d, J = 6.8 Hz, 3H, NPhCH*Me*₂), 0.10 (s, 18H, CH₂Si*Me*₃), -0.48 (br, 4H, CH₂SiMe₃) ppm.

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 _{0/ppm}

Fig. S8. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of **L**^a-Y(CH₂SiMe₃)₂THF (**2a**): δ 8.24 (dd, *J* = 8.2, 1.8 Hz, 1H, *o*-Ph*H*N), 6.99 (dd, *J* = 7.4, 1.8 Hz, 1H, *p*-Ph*H*N), 6.94 (ddd, *J* = 8.6, 6.7, 1.8 Hz, 1H, *m*-NPhMe₂), 6.88 (dd, *J* = 7.7, 1.8 Hz, 1H, *m*-NPhMe₂), 6.83 (t, *J* = 7.4 Hz, 1H, *m*-Ph*H*N), 6.49 (ddd, *J* = 8.1, 6.7, 1.2 Hz, 1H, *p*-NPhMe₂), 6.02 (dd, *J* = 8.7, 1.1 Hz, 1H, *m*-Ph*H*N), 4.68 (dqd, *J* = 8.4, 6.6, 4.3 Hz, 1H, OCH₂CHN), 3.98 (t, *J* = 8.4 Hz, 1H, OCH₂CHN), 3.50 (dd, *J* = 8.4, 4.4 Hz, 1H, OCH₂CHN), 3.45 (q, *J* = 6.8 Hz, 2H, THF), 3.08 (d, *J* = 7.1 Hz, 2H, THF), 2.20 (s, 3H, NPh*Me*₂), 2.07 (s, 3H, NPh*Me*₂), 1.29 (d, *J* = 6.6 Hz, 4H, NCH*Me*), 1.12 (q, *J* = 6.0 Hz, 4H, THF), 0.26 (s, 18H, CH₂Si*Me*₃), -0.44 (br, 4H, CH₂SiMe₃) ppm.

Fig. S9. ¹H NMR spectrum (500 MHz, C_6D_6 , 25°C) of L^b-Y(CH₂SiMe₃)₂THF (**2b**): δ 8.23 (dd, J = 8.2, 1.8 Hz, 1H, o-PhHN), 7.14 (d, J = 2.4 Hz, 1H, p-PhHN), 7.12 – 7.05 (m, 2H, m-NPhCHMe₂), 6.89 (ddd, J = 8.7, 6.7, 1.9 Hz, 1H, m-PhHN), 6.46 (ddd, J = 8.1, 6.7, 1.1 Hz, 1H, p-NPhCHMe₂), 6.01 (d, J = 8.7 Hz, 1H, m-PhHN), 4.84 – 4.66 (m, 1H, OCH₂CHN), 3.98 (t, J = 8.2 Hz, 1H, OCH₂CHN), 3.51 (dd, J = 8.3, 4.2 Hz, 1H, OCH₂CHN), 3.41 (ddd, J = 20.4, 8.4, 5.5 Hz, 3H, NPhCHMe₂ and THF), 3.19 (td, J = 15.7, 14.6, 7.9 Hz, 3H, NPhCHMe₂ and THF), 1.33 (d, J = 6.6 Hz, 3H, NPhCHMe₂), 1.27 (d, J = 6.9 Hz, 3H, NPhCHMe₂), 1.16 (d, J = 6.9 Hz, 7H, NPhCHMe₂ and THF), 1.04 (d, J = 6.7 Hz, 3H, NPhCHMe₂), 0.98 (d, J = 6.7 Hz, 3H, NCHMe), 0.27 (s, 18H, CH₂SiMe₃), -0.43 (br, 2H, CH₂SiMe₃), -0.56 (br, 2H, CH₂SiMe₃) ppm.

Fig. S10. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of L^c-Y(CH₂SiMe₃)₂THF (**2c**): δ 8.23 (dd, *J* = 8.2, 1.9 Hz, 1H, *o*-Ph*H*N), 7.06 – 6.98 (m, 1H, *p*-Ph*H*N), 6.94 (ddd, *J* = 8.8, 6.7, 1.9 Hz, 1H, *m*NPhMe₂), 6.91 – 6.82 (m, 2H, *m*-NPhMe₂) and *m*-Ph*H*N), 6.48 (t, *J* = 7.5 Hz, 1H, *p*-NPhMe₂), 6.03 (d, *J* = 8.7 Hz, 1H, *m*-Ph*H*N), 4.86 (ddd, *J* = 8.0, 5.6, 3.3 Hz, 1H, OCH₂C*H*N), 4.05 – 3.96 (m, 2H, OCH₂CHN), 3.52 (q, *J* = 6.7 Hz, 2H, THF), 3.03 (q, *J* = 6.7 Hz, 2H, THF), 2.71 (td, *J* = 6.9, 3.4 Hz, 1H, NCHC*H*Me₂), 2.21 (s, 3H, NPh*Me*₂), 2.07 (s, 3H, NPh*Me*₂), 1.14 (h, *J* = 6.4 Hz, 4H, THF), 0.76 (dd, *J* = 14.1, 6.9 Hz, 6H, NCHCHMe₂), 0.25 (s, 18H, CH₂SiMe₃), -0.39 (br, 4H, CH₂SiMe₃) ppm.

Fig. S11. ¹H NMR spectrum (500 MHz, C₆D₆, 25°C) of L^d-Y(CH₂SiMe₃)₂THF (**2d**): δ 8.21 (dd, *J* = 8.2, 1.9 Hz, 1H, *o*-Ph*H*N), 7.17 (d, *J* = 2.8 Hz, 1H, *p*-Ph*H*N), 7.14 – 7.04 (m, 2H, *m*-NPhCHMe₂), 6.89 (ddd, *J* = 8.7, 6.7, 1.9 Hz, 1H, *m*-Ph*H*N), 6.44 (ddd, *J* = 8.0, 6.7, 1.1 Hz, 1H, *p*-NPhCHMe₂), 6.04 (dd, *J* = 8.7, 1.2 Hz, 1H, *m*-Ph*H*N), 4.88 (ddd, *J* = 7.2, 5.6, 3.3 Hz, 1H, OCH₂CHN), 4.06 – 3.98 (m, 2H, OCH₂CHN), 3.50 (q, *J* = 6.9 Hz, 2H, THF), 3.43 (p, *J* = 6.8 Hz, 1H, NPhCHMe₂), 3.18 (p, *J* = 6.8 Hz, 1H, NPhCHMe₂), 3.08 (t, *J* = 6.5 Hz, 2H, THF), 2.71 (ddd, *J* = 10.2, 6.4, 2.9 Hz, 1H, NCHCHMe₂), 1.29 (d, *J* = 6.9 Hz, 3H, NPhCHMe₂), 1.14 (dd, *J* = 6.4, 3.4 Hz, 7H, NPhCHMe₂ and THF), 1.10 (d, *J* = 6.7 Hz, 3H, NPhCHMe₂), 0.96 (d, *J* = 6.7 Hz, 3H, NPhCHMe₂), 0.80 (dd, *J* = 7.0, 2.1 Hz, 3H, NCHCHMe₂), 0.76 (d, *J* = 6.8 Hz, 3H, NCHCHMe₂), 0.26 (s, 18H, CH₂SiMe₃), -0.39 (br, 2H, CH₂SiMe₃), -0.57 (br, 2H, CH₂SiMe₃) ppm.

Fig. S12. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L^a-Sc(CH₂SiMe₃)₂THF (**1a**): δ 169.11 (s, OCN), 155.42, 137.53, 136.20, 134.61, 131.80, 129.61, 128.84, 124.99, 114.82, 114.45, 108.84, 73.41 (s, THF), 71.49 (s, OCH₂CH), 61.09 (s, OCH₂CH), 40.73 (br, CH₂SiMe₃), 25.11 (s, THF), 21.80 (s, NPh*Me*₂), 19.18 (s, NPh*Me*₂), 18.77 (s, NCH*Me*), 4.12 (s, CH₂Si*Me*₃) ppm.

Fig. S13. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of **L**^b-Sc(CH₂SiMe₃)₂THF (**1b**): δ 170.02 (s, OCN), 157.27, 147.05, 146.76, 141.71, 134.18, 131.63, 126.77, 125.37, 124.90, 118.21, 115.07, 108.32, 73.50 (s, THF), 70.65 (s, OCH₂CH), 60.46 (s, OCH₂CH), 41.88 (br, CH₂SiMe₃), 28.74 (s, NPhCHMe₂), 28.37 (s, NPhCHMe₂), 25.82 (s, NPhCH*Me*₂), 25.69 (s, NPhCH*Me*₂), 25.32 (s, THF), 24.78 (s, NPhCH*Me*₂), 24.36 (s, NPhCH*Me*₂), 21.76 (s, NCH*Me*), 3.86 (s, CH₂Si*Me*₃) ppm.

Fig. S14. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L^c-Sc(CH₂SiMe₃)₂THF (**1c**): δ 169.23 (s, OCN), 155.33 , 146.33 , 137.76 , 136.02 , 134.61 , 131.96 , 129.72 , 128.71 , 124.97 , 114.83 , 114.50 , 108.29 , 71.57 (s, THF), 70.39 (s, OCH₂CH), 66.45 (s, OCH₂CH), 41.30 (br, CH₂SiMe₃), 30.71 (s, NCHCHMe₂), 25.16 (s, THF), 19.19 (s, NPh*Me*₂), 18.90 (s, NPh*Me*₂), 18.67 (s, NCHCH*Me*₂), 14.02 (s, NCHCH*Me*₂), 4.14 (s, CH₂Si*Me*₃) ppm.

Fig. S15. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L^d-Sc(CH₂SiMe₃)₂THF (**1d**): δ 170.73 (s, OCN), 157.10, 146.98, 146.40, 140.29, 134.74, 131.89, 127.03, 125.58, 124.74, 117.97, 115.47, 107.58, 70.52 (s, THF), 69.10 (s, OCH₂CH), 67.36 (s, OCH₂CH), 43.18 (br, CH₂SiMe₃), 31.76 (s, NCHCHMe₂), 28.69 (s, NPhCHMe₂), 28.51 (s, NPhCHMe₂), 25.97 (s, NPhCHMe₂), 25.47 (s, THF), 25.28 (d, *J* = 4.6 Hz, NPhCHMe₂), 24.09 (s, NPhCHMe₂), 18.66 (s, NCHCHMe₂), 14.10 (s, NCHCHMe₂), 3.63 (s, CH₂SiMe₃) ppm.

Fig. S16. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L^e-Sc(CH₂SiMe₃)₂THF (**1e**): δ 170.50 (s, OCN), 155.76, 146.71, 141.90, 137.67, 135.78, 134.86, 132.00, 129.69, 128.94, 128.60, 126.51, 124.87, 115.01, 114.49, 107.73, 74.82 (s, THF), 71.55 (s, OCH₂CH), 68.55 (s, OCH₂CH), 41.98 (br, CH₂SiMe₃), 39.44 (br, CH₂SiMe₃), 25.11 (s, THF), 19.14 (s, NPh*Me*₂), 18.93 (s, NPh*Me*₂), 4.13 (s, CH₂Si*Me*₃) ppm.

Fig. S17. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L^f-Sc(CH₂SiMe₃)₂THF (**1f**): δ 171.12 (s, OCN), 157.64, 147.29, 146.24, 141.39, 134.45, 131.85, 129.09, 128.46, 126.67 (d, *J* = 7.1 Hz), 125.38, 124.72, 118.15, 115.09, 107.30, 74.87 (s, THF), 70.80 (s, OCH₂CH), 68.02 (s, OCH₂CH), 42.27 (br, CH₂SiMe₃), 28.58 (d, *J* = 5.1 Hz, NCHPhMe₂), 25.90 (s, NCHPhMe₂), 25.70 (s, THF), 25.17 (d, *J* = 13.6 Hz, NCHPhMe₂), 23.77 (s, NCHPhMe₂), 3.83 (s, CH₂SiMe₃) ppm.

Fig. S18. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L^a-Y(CH₂SiMe₃)₂THF (**2a**): δ 169.24 (s, OCN), 155.71, 144.67, 138.06, 137.10, 134.48, 132.45, 129.76, 128.99, 125.03, 114.79, 113.63, 108.89, 72.90 (s, THF), 70.62 (s, OCH₂CH), 60.90 (s, OCH₂CH), 34.73 (d, *J* = 38.9 Hz, CH₂SiMe₃), 25.05 (s, THF), 22.32 (s, NPh*Me*₂), 19.08 (s, NPh*Me*₂), 18.76 (s, NCH*Me*), 4.50 (s, CH₂Si*Me*₃) ppm.

Fig. S19. ¹³C NMR spectrum (125 MHz, C_6D_6 , 25°C) of L^{b} -Y(CH₂SiMe₃)₂THF (**2b**): δ 169.37 (s, OCN), 157.64 , 148.43 , 147.83 , 141.98 , 133.42 , 132.18 , 126.34 , 125.27 , 124.99 , 117.86 , 113.55 , 108.65 , 72.84 (s, THF), 70.43 (s, OCH₂CH), 61.07 (s, OCH₂CH), 34.60 (d, *J* = 32.5 Hz, CH₂SiMe₃), 28.62 (s, NPhCHMe₂), 28.46 (s, NPhCHMe₂), 26.05 (s, NPhCHMe₂), 25.53 (s, NPhCHMe₂), 25.11 (s, THF), 24.69 (s, NPhCHMe₂), 24.41 (s, NPhCHMe₂), 22.24 (s, NCHMe), 4.60 (s, CH₂SiMe₃) ppm.

Fig. S20. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L^c-Y(CH₂SiMe₃)₂THF (**2c**): δ 169.21 (s, OCN), 155.71, 144.66, 138.25, 136.96, 134.49, 132.58, 129.91, 128.83, 125.02, 114.82, 113.67, 108.42, 70.65 (s, THF), 70.31 (s, OCH₂CH), 65.90 (s, OCH₂CH), 34.84 (d, *J* = 25.0 Hz, CH₂SiMe₃), 31.23 (s, NCHCHMe₂), 25.10 (s, THF), 19.04 (d, *J* = 6.6 Hz, NPh*Me*₂), 18.59 (s, NCHCH*Me*₂), 13.89 (s, NCHCH*Me*₂), 4.47 (s, CH₂Si*Me*₃) ppm.

Fig. S21. ¹³C NMR spectrum (125 MHz, C₆D₆, 25°C) of L^d-Y(CH₂SiMe₃)₂THF (**2d**): δ 169.46 (s, OCN), 157.63 , 148.63 , 147.31 , 142.20 , 133.47 , 132.34 , 126.26 , 125.23 , 124.97 , 117.76 , 113.59 , 108.06 , 70.48 (s, THF), 70.23 (s, OCH₂CH), 65.95 (s, OCH₂CH), 35.01 (br, CH₂SiMe₃), 31.26 (s, NCHCHMe₂), 28.78 (s, NPhCHMe₂), 28.51 (s, NPhCHMe₂), 26.06 (s, NPhCHMe₂), 25.46 (s, NPhCHMe₂), 25.09 (s, THF), 24.89 (s, NPhCHMe₂), 24.15 (s, NPhCHMe₂), 19.03 (s, NCHCHMe₂), 13.95 (s, NCHCHMe₂), 4.55 (s, CH₂SiMe₃) ppm.

Fig. S22. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 1).

Fig. S24. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 2).

Fig. S25. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 2).

Fig. S26. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 3).

Fig. S27. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 3).

Fig. S28. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 4).

Fig. S29. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 4).

Fig. S30. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 5).

Fig. S31. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 5).

Fig. S32. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 6).

Fig. S33. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 6).

Fig. S34. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 7).

Fig. S36. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 8).

Fig. S37. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 8).

Fig. S38. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 9).

Fig. S39. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 9).

Fig. S40. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 10).

Fig. S41. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 1, run 10).

Fig. S42. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 2, run 1).

Fig. S43. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 2, run 2).

Fig. S45. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 2, run 4).

Fig. S46. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 2, run 5).

Fig. S47. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 1).

Fig. S48. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 1).

8 5.32 5.30 5.28 5.26 5.24 5.22 5.20 5.18 5.16 5.14 5.12 5.10 5.08 5.06 5.04 5.02 5.00 4.98 4.96 4.94 4.92 Ölppm

Fig. S49. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 2).

Fig. S50. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 2).

Fig. S51. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 3).

Fig. S52. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 3).

Fig. S53. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 4).

Fig. S54. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 4).

Fig. S55. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 5).

Fig. S56. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 5).

Fig. S57. ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 6).

Fig. S58. Homonuclear decoupled ¹H NMR spectrum (500 MHz, CDCl₃, 25°C) of the resultant PLA (Table 3, run 6).

Fig. S59. The SEC trace of the resultant PLA (Table 1, run 1).

Fig. S60. The SEC trace of the resultant PLA (Table 1, run 2).

Fig. S61. The SEC trace of the resultant PLA (Table 1, run 3).

Fig. S62. The SEC trace of the resultant PLA (Table 1, run 4).

Fig. S63. The SEC trace of the resultant PLA (Table 1, run 5).

Fig. S64. The SEC trace of the resultant PLA (Table 1, run 6).

Fig. S65. The SEC trace of the resultant PLA (Table 1, run 7).

Fig. S66. The SEC trace of the resultant PLA (Table 1, run 8).

Fig. S67. The SEC trace of the resultant PLA (Table 1, run 9).

Fig. S68. The SEC trace of the resultant PLA (Table 1, run 10).

Fig. S69. The SEC traces of the resultant PLAs (Table 2).

Fig. S70. The SEC trace of the resultant PLA (Table 3, run 1).

Fig. S71. The SEC trace of the resultant PLA (Table 3, run 2).

Fig. S72. The SEC trace of the resultant PLA (Table 3, run 3).

Fig. S73. The SEC trace of the resultant PLA (Table 3, run 4).

Fig. S74. The SEC trace of the resultant PLA (Table 3, run 5).

Fig. S75. The SEC trace of the resultant PLA (Table 3, run 6).