Electronic Supporting Information

for

Redefining the preferences of five-membered chelate rings: insights from the Cambridge Structural Database and theoretical calculations

Maryam Bazargan^a, Masoud Mirzaei^{a,*}, Antonio Franconetti,^b Antonio Frontera^{b,*}

^a Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 917751436, Mashhad, Iran E-mail: <u>mirzaeesh@um.ac.ir</u> and <u>mirzaei487@yahoo.com</u>

^b Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, Palma de Mallorca, Baleares E-07122, Spain E-mail: toni.frontera@uib.es

Index

Fig. S1: Frequency of metal complexes with phen/bpy/en ligands in red/green/blue, respectively

Fig S2. BP86-D3/def2-TZVP optimized structures of three representative complexes (Distances in Å). H-atoms omitted for clarity.

Fig. S3. Categorization of all IOH-1–3 based on central metal in the MOCs.

H																	Не
Li 15 13 9	Be 1				Cr 118 2.06 79.6	6 The Cr a The The	frequency s a central of frequency frequency	of the struc metal of the struc of the struc	tures with <i>j</i> tures with <i>i</i> tures with <i>i</i>	ohen backbo opy backbon en backbon	one and ne	B 2 27 	С	N	0	F	Ne
Na 30 6 4	Mg 30 7 8											Al 1 6 4	Si 24 28 	Р	S	CI	Ar
K 18 3 8	Ca 30 13 5	Sc 3 4 	Ti 4 28 	V 136 152 3	Cr 113 137 121	Mn 762 677 84	Fe 355 298 26	Co 745 554 969	Ni 556 560 493	Cu 2082 1992 732	Zn 740 639 143	Ga 16 19 9	Ge 11 16 5	As 1 5 	Se 2 	Br	Kr
Rb 4 3	Sr 24 5 5	Y 37 15 4	Zr 2 9	Nb 3 12 	Mo 116 162 30	Tc 10 15 6	Ru 284 1568 98	Rh 39 101 37	Pd 135 415 233	Ag 78 115 7	Cd 609 439 78	In 39 55 16	Sn 57 48 3	Sb 14 14 1	Te 2 	I	Xe
Cs	Ba 30 8 11	La 122 31 16	Hf 1 	Ta 1 	W 25 81 11	Re 111 256 13	Os 43 144 18	Ir 37 99 23	Pt 101 394 318	Au 10 20 8	Hg 24 39 11	TI 12 7 3	Pb 210 114 20	Bi 52 32 	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
			Ce 58 12 8 Th 	Pr 88 31 7 Pa	Nd 112 38 10 U 38	Pm Np 2	Sm 112 42 13 Pu 	Eu 253 77 10 Am	Gd 94 35 8 Cm	Tb 143 43 1 Bk	Dy 107 51 9 Cf	Ho 50 16 6 Es	Er 75 30 5 Fm	Tm 19 9 4 Md	Yb 77 31 3 No	Lu 12 16 Lr	
			10		67 	14 	4	1									

Fig. S1: Frequency of metal complexes with *phen/bpy/en* ligands in red/green/blue, respectively.

Fig S2. BP86-D3/def2-TZVP optimized structures of three representative complexes (Distances in Å). Hatoms omitted for clarity.

Fig. S3. Categorization of all IOH-1-3 based on central metal in the MOCs.

Theoretical methods

The optimization of the complexes was carried out using the TURBOMOLE software (version 7.0) [S1] at the PB86-D3/def2-TZVP level of theory. The minimum nature of the complexes was confirmed by frequency calculations. The complexation energies reported in Table 2 were computed by calculating the difference between the energies of isolated monomers and their assembly.

[S1] R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 162 (1989) 165-169.