Decarbonylation of Phenylacetic Acids by High Valent Transition

Metal Halides

Niccolò Bartalucci, Fabio Marchetti, Stefano Zacchini, Guido Pampaloni

Supporting Information

Table of contents	Pages
Spectroscopic data of carboxylic acids	S2
Figure S1, Table S1: ORTEP drawing of 6, and selected bonding parameters	S4
Figure S2, Tables S2-S3: ORTEP drawing of 8, and selected bonding parameters	S5
Figure S3, Tables S4-S5: ORTEP drawing of $CPh_2(CH_2CH_2Br)CO_2H$ (A1), and selected bonding parameters	S6
Figure S4, Tables S6-S7: ORTEP drawing of $CPh_2(CH_2CH_3)CO_2H$ (A2), and selected bonding parameters	S7
Figures S5-S32: NMR spectra of products	S8-S15
Figures S33-S39: IR spectra of products	S16-S18

Spectroscopic data of carboxylic acids.

A)CPh₃CO₂H. IR (solid state): v/cm⁻¹ = 3056w, 2789w, 2611w, 1693vs (C=O), 1597w, 1488m, 1445m, 1405w, 1282m-sh, 1258m, 1190w-m, 1084w, 1035w, 1002w, 943w-br, 906w, 759m, 733s, 697vs, 667m-s. ¹H NMR (dmso-d₆): δ/ppm = 7.28, 7.15 (m, 15 H, Ph); 3.5 (br, 1 H, OH). ¹³C{¹H} NMR (dmso-d₆): δ/ppm = 174.8 (C=O); 143.7 (*ipso*-Ph), 130.4, 128.1, 127.1 (Ph); 67.4 (CPh₃).

B) CMe(Ph)₂CO₂H. IR (solid state): v/cm⁻¹ = 3088w, 3063w, 3024w, 3003w, 2985w, 2945w, 2825w, 1697s (C=O), 1598w, 1581w, 1494m, 1462w-m, 1445m, 1409w-m, 1379w, 1293m, 1275m-s, 1213w-m, 1200w-m, 1125w-m, 1070w-m-sh, 1052w, 1030w-m, 937m-br, 922m, 882w, 838w, 773w, 757m-s, 734m-s, 697vs, 657m-s cm⁻¹. ¹H NMR (CDCl₃): δ/ppm = 7.36-7.25 (10 H, Ph); 1.95 (s, 3 H, Me). ¹³C{¹H} NMR (CDCl₃): δ/ppm = 180.9 (OCO); 144.4 (*ipso*-Ph); 128.7, 128.6, 127.6 (Ph); 56.9 (CPh₂); 27.2 (Me).

C) CMe₂(Ph)CO₂H. IR (solid state): v/cm⁻¹ = 2974w, 2115w, 1694vs (C=O), 1497w, 1471w, 1446w, 1438w, 1404w, 1365w, 1293m, 1176w, 1160w-m, 1102w, 1078w, 1030w, 1013w, 938m, 840w, 776w, 756w, 731m, 697s cm⁻¹. ¹H NMR (CDCl₃): δ /ppm = 7.43 (d, ³J_{HH} = 7.6 Hz, 2 H, *ortho* H); 7.37 (t, ³J_{HH} = 7.6 Hz, 2 H, *meta* H); 7.29 (d, ³J_{HH} = 7.2 Hz, 1 H, *para* H); 1.63 (s, 3H).; 1.63 (s, 6 H, Me). ¹³C{¹H} NMR (CDCl₃): δ /ppm = 182.9 (C=O); 143.8 (*ipso*-Ph); 128.5, 127.0, 125.8 (Ph); 46.3 (*C*Me₂); 26.2 (Me).

D) CPh₂(CH₂CH₂Br)CO₂H. IR (solid state): v/cm⁻¹ = 3058w, 2983w, 2932w, 2815w, 2684w, 2639w, 2516w, 1958w, 1900w, 1815w, 1771w, 1702vs, 1599w-m, 1494m-s, 1440m-sh, 1402m, 1335w, 1306w-m, 1270s, 1229w, 1209w, 1178w, 1162w, 1147w-m, 1088w, 1066w, 1034w, 1015w-m, 915m-br, 841w, 785w-m, 756s, 740m, 726m-s, 687vs cm^{-1. 1}H NMR (CDCl₃): δ/ppm = 10.58 (br, 1 H, OH); 7.40-7.31 (m, 10 H, Ph); 3.15-3.11 (m, 2 H, BrCH₂); 3.01-2.97 (m, 2 H, CH₂). ¹³C{¹H} NMR (CDCl₃): δ/ppm = 179.9 (C=O); 141.0 (*ipso*-Ph); 128.7, 128.4, 127.6 (Ph); 60.6 (*CPh₂*); 41.6 (CH₂); 28.8 (BrCH₂).

E) CHPh₂CO₂H. IR (solid state): v/cm⁻¹ = 3025w, 2903w, 2703w, 2604w, 1956w, 1699s (C=O), 1600w-m, 1581w, 1497m, 1449m-sh, 1410m, 1314m-sh, 1282w, 1222s, 1183w-br, 1080w, 1033w-

m, 1003w, 933m-s-br, 886w, 768w, 749m-s, 731s, 695vs, 666m-s cm⁻¹. ¹H NMR (CDCl₃): δ/ppm =11.2 (s, br, 1 H, OH); 7.74 – 6.98 (m, 10 H, Ph); 5.11 (s, 1 H, CH).¹³C{¹H} NMR (CDCl₃): δ/ppm =179.0 (C=O); 137.9, 128.7, 127.6 (Ph); 57.1 (CH).

F) MeC=CCO₂H. IR (solid state): $v/cm^{-1} = 2801w$, 2624m, 2479w-m, 2321w, 2246vs (C=C), 2138w-m, 2041w, 1997w, 1699s (C=O), 1661s, 1635s, 1567m-s, 1506w, 1439w-m, 1399s, 1368m, 1242vs-br, 1074m-s, 1025w-m, 854m-s-br, 778s, 751vs, 731s cm⁻¹. ¹H NMR (CDCl₃): δ /ppm = 11.33 (s, 1H, OH); 2.01 (s, 3 H, Me). ¹³C{¹H} NMR (CDCl₃): δ /ppm = 158.6 (C=O); 88.8(CO-C=C); 71.9(C=C-Me); 3.8 (Me).

Figure S1. ORTEP drawing of the structure of 6. Displacement ellipsoids are at the 50% probability level.

C(1)-O(1)	1.187(4)	C(1)-O(2)	1.341(4)
C(1)-C(2)	1.538(5)	C(2)-C(3)	1.541(4)
C(3)-C(4)	1.510(5)	C(4)-O(2)	1.454(5)
C(2)-C(5)	1.532(4)	C(2)-C(11)	1.540(5)
O(2)-C(1)-C(2)	128.5(3)	O(2)-C(1)-O(1)	121.9(3)
O(1)-C(1)-C(2)	109.6(3)	C(1)-C(2)-C(3)	100.9(3)
C(2)-C(3)-C(4)	102.3(3)	C(3)-C(4)-O(2)	104.3(3)
C(4)-O(2)-C(1)	110.9(3)	C(5)-C(2)-C(11)	110.5(3)

Figure S2. ORTEP drawing of the structure of $MeC(CI)=CHCO_2H$, **8**. Displacement ellipsoids are at the 50% probability level.

Table S2. Selected bond lengths (Å) and angles (deg) for MeC(CI)=CHCO₂H, 8.

C(1)-O(1)	1.351(13)	C(1)-O(2)	1.179(13)
C(1)-C(2)	1.507(15)	C(2)-C(3)	1.331(14)
C(3)-C(4)	1.496(14)	C(3)-Cl(1)	1.709(12)
O(1)-C(1)-O(2)	122.5(10)	O(1)-C(1)-C(2)	109.2(11)
O(2)-C(1)-C(2)	128.3(10)	C(1)-C(2)-C(3)	126.8(11)
C(2)-C(3)-C(4)	122.9(11)	C(2)-C(3)-Cl(1)	122.6(9)
C(4)-C(3)-Cl(1)	114.5(8)		

Table S3. Hydrogen bonds for MeC(CI)=CHCO₂H, 8 [Å and deg].

 D-HA	d(D-H)	d(H···A)	d(D…A)	<(DHA)	
O(1)-H(1)····Cl(1)#1	0.82	2.62	3.370(12)	153.5	

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,-y+1/2,z+1/2.

Figure S3. ORTEP drawing of the structure of $CPh_2(CH_2CH_2Br)CO_2H$ (A1). Displacement ellipsoids are at the 50% probability level.

Table S4. Selected bond lengths (Å) and angles (deg) for CPh₂(CH₂CH₂Br)CO₂H, A1.

C(1)-O(1)	1.307(6)	C(1)-O(2)	1.222(6)
C(1)-C(2)	1.539(6)	C(2)-C(3)	1.548(7)
C(3)-C(4)	1.520(7)	C(4)-Br(1)	1.965(5)
C(2)-C(5)	1.541(7)	C(2)-C(11)	1.544(7)
O(1)-C(1)-O(2)	123.9(4)	O(1)-C(1)-C(2)	114.0(4)
O(2)-C(1)-C(2)	122.1(4)	C(1)-C(2)-C(3)	109.1(4)
C(2)-C(3)-C(4)	112.8(4)	C(3)-C(4)-Br(1)	108.6(3)
C(5)-C(2)-C(11)	111.6(4)		

Table S5. Hydrogen bonds for CPh₂(CH₂CH₂Br)CO₂H, **A1** [Å and deg].

D-HA	d(D-H)	d(H···A)	d(D···A)	<(DHA)
O(1)-H(1)····O(2)#1	0.84	1.80	2.637(5)	170.8

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1, -z.

Figure S4. ORTEP drawing of the structure of $CPh_2(CH_2CH_3)CO_2H$, **A2**. Displacement ellipsoids are at the 50% probability level.

Table S6. Selected bond lengths (Å) and angles (deg) for CPh₂(CH₂CH₃)CO₂H, A2.

C(1)-O(1)	1.3300(18)	C(1)-O(2)	1.2330(18)
C(1)-C(2)	1.5436(18)	C(2)-C(3)	1.563(2)
C(3)-C(4)	1.536(2)		
C(2)-C(5)	1.557(2)	C(2)-C(11)	1.547(2)
O(1)-C(1)-O(2)	122.48(11)	O(1)-C(1)-C(2)	113.02(11)
O(2)-C(1)-C(2)	124.40(12)	C(1)-C(2)-C(3)	109.13(11)
C(2)-C(3)-C(4)	114.38(10)	C(5)-C(2)-C(11)	109.70(10)

Table S7. Hydrogen bonds for CPh₂(CH₂CH₃)CO₂H, A2 [Å and deg].

D-HA	d(D-H)	d(H···A)	d(D…A)	<(DHA)	
O(1)-H(1)····O(2)#1	0.84	1.85	2.681(2)	173.3	

Symmetry transformations used to generate equivalent atoms: #1 -x+2, -y+1, -z+1.

Figure S17. ¹H NMR spectrum (401 MHz, CD₂Cl₂) of [CPh₃][MoOCl₄], 1.

Figure S18. $^{13}C{^{1}H}$ NMR spectrum (101 MHz, CD_2Cl_2) of $[CPh_3][MoOCl_4]$, 1.

Figure S20. 93 Nb NMR spectrum (CD₃CN) of [CPh₃][NbF₆], 2.

Figure S21. ¹H NMR spectrum (401 MHz, CD₂Cl₂) of [CPh₃][NbCl₆], **3**.

Figure S22. $^{13}C{}^{1}H$ NMR spectrum (101 MHz, CD_2Cl_2) of $[CPh_3][NbCl_6]$, 3.

Figure S23. ¹H NMR spectrum (401 MHz, CD₂Cl₂) of **5a**.

Figure S24. $^{13}C{^1H}$ NMR spectrum (101 MHz, CD_2Cl_2) of 5a.

Figure S26. $^{13}C{^1H}$ NMR spectrum (101 MHz, CD_2Cl_2) of 5b.

Figure S27. ¹H NMR spectrum (401 MHz, CD₂Cl₂) of NbCl₄(O₂CCHPh₂), 6.

Figure S28. $^{13}C{^1H}$ NMR spectrum (101 MHz, CD_2CI_2) of NbCl₄(O₂CCHPh₂), 6.

Figure S29. ¹H NMR spectrum (401 MHz, CDCl₃) of 3,3-diphenyldihydrofuran-2(3H)-one, **7**.

Figure S30. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of 3,3-diphenyldihydrofuran-2(3H)-one, **7**.

Figure S31. ¹H NMR spectrum (401 MHz, CDCl₃) of MeC(Cl)=CHCOOH, 8.

Figure S32. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of MeC(Cl)=CHCOOH, 8.

Figure S33. IR (ATR) spectrum of $[CPh_3][MoOCl_4]$, 1.

Figure S34. IR (ATR) spectrum of [CPh₃][NbF₆], 2.

Figure S36. IR (ATR) spectrum of $[CPh_3][Ti_2Cl_8(\mu-\kappa^2-O_2CCPh_3)]$, 4.

Figure S37. IR (ATR) spectrum of NbCl₄(O₂CCHPh₂), 6.

