## Supplementary Information for

## Hydrophobicity Enhances Membrane Affinity and Anti-Cancer Effects of Schiff Base Vanadium(V) Catecholate Complexes

Debbie C. Crans,<sup>\*a,b</sup> Jordan T. Koehn,<sup>a</sup> Stephanie M. Petry,<sup>a</sup> Caleb M. Glover,<sup>a</sup> Asanka Wijetunga,<sup>c</sup> Ravinder Kaur,<sup>c</sup> Aviva Levina,<sup>c</sup> and Peter A. Lay<sup>\*c</sup>

<sup>a</sup>Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States; <sup>b</sup>Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States; and <sup>c</sup>School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

## **Table of Contents**

| 1. | NMR Spectra                                                                                                                                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 1.2. 1D <sup>1</sup> H NMR Spectra of <sup>1</sup> H NMR Spectra of [VO(Hshed)(cat)] in D <sub>2</sub> O, d <sub>6</sub> -DMSO, and in a Series of Reverse MicellesS3 |
| 2. | Dynamic Light Scattering Data for [V(O)2(Hshed)], H2shed, [VO(Hshed)(cat)], H2cat,<br>[VO(Hshed)(dtb)], and H2dtbS4                                                   |
| 3. | ReferencesS5                                                                                                                                                          |

1. NMR Spectra

1.1 <sup>1</sup>H NMR Spectra of [VO(Hshed)(dtb)] in D<sub>2</sub>O, d<sub>6</sub>-DMSO, and in a Series of Reverse Micelles.



**Figure S1:** <sup>1</sup>H NMR spectra of [VO(Hshed)(dtb)] in d<sub>6</sub>-DMSO, *iso*-octane, and in a series of RMs ( $w_0 = 8, 12, 16, and 20$  prepared from 0.750 M AOT/*iso*-octane stock solution). The spectrum in D<sub>2</sub>O was recorded after 60 min. and the spectra in RMs was recorded after 50 min. once equilibrium had been established. Proton labeling scheme is found in Figure 1. SalA = Salicylaldehyde.



1.2 <sup>1</sup>H NMR Spectra of [VO(Hshed)(cat)] in D<sub>2</sub>O, d<sub>6</sub>-DMSO, and in a Series of Reverse Micelles.

**Figure S2:** <sup>1</sup>H NMR spectra of [VO(Hshed)(cat)] in d<sub>6</sub>-DMSO, D<sub>2</sub>O, and in a series of RMs ( $w_0 = 8, 12, 16, and 20$  prepared from 0.750 M AOT/*iso*-octane stock solution). The spectrum in D<sub>2</sub>O was recorded after 50 min. and the spectra in RMs was recorded after 40 min. once equilibrium had been reached. Proton labeling scheme is found in Figure 1. SalA = Salicylaldehyde.

2. Dynamic Light Scattering Data for [V(O)<sub>2</sub>(Hshed)], H<sub>2</sub>shed, [VO(Hshed)(cat)], H<sub>2</sub>cat,

[VO(Hshed)(dtb)], and H<sub>2</sub>dtb.

Table S1. Dynamic Light Scattering measurements on [V(O)<sub>2</sub>(Hshed)], H<sub>2</sub>shed, [VO(Hshed)(cat)], H<sub>2</sub>cat, [VO(Hshed)(dtb)], and H<sub>2</sub>dtb in 0.1 M AOT/isooctane RMs.

|                                                              | $w_0 = 12$   | $w_o = 20$   |
|--------------------------------------------------------------|--------------|--------------|
| N(probe)/N(micelle)                                          | 2.3          | 1.4          |
| [V(O) <sub>2</sub> (Hshed)] r <sub>h</sub> <sup>a</sup> (nm) | 3.9 (± 0.3)  | 4.5 (± 0.3)  |
| PDI [V(O) <sub>2</sub> (Hshed)]                              | 0.33 (±0.16) | 0.52 (±0.17) |
| H <sub>2</sub> shed r <sub>h</sub> <sup>a</sup> (nm)         | 4.0 (± 0.3)  | 4.3 (± 0.3)  |
| PDI H <sub>2</sub> shed                                      | 0.20 (±0.08) | 0.60 (±0.20) |
| [VO(Hshed)(cat)] r <sub>h</sub> <sup>a</sup> (nm)            | 3.5 (±0.3)   | 4.3 (± 0.4)  |
| PDI [VO(Hshed)(cat)]                                         | 0.27 (±0.12) | 0.46 (±0.18) |
| H₂cat r <sub>h</sub> ª (nm)                                  | 3.8 (±0.2)   | 4.4 (± 0.3)  |
| PDI H <sub>2</sub> cat                                       | 0.43 (±0.16) | 0.23 (±0.09) |
| [VO(Hshed)(dtb)] r <sub>h</sub> <sup>a</sup> (nm)            | 3.6 (±0.5)   | 4.1 (±0.3)   |
| PDI [VO(Hshed)(dtb)]                                         | 0.45 (±0.08) | 0.16 (±0.05) |
| H <sub>2</sub> dtb r <sub>h</sub> <sup>a</sup> (nm)          | 3.8 (±0.2)   | 4.3 (±0.3)   |
| PDI H <sub>2</sub> dtb                                       | 0.22 (±0.08) | 0.48 (±0.11) |
| Blank r <sub>h</sub> ª (nm)                                  | 3.6 (± 0.3)  | 4.6 (± 0.3)  |
| PDI Blank                                                    | 0.42 (±0.17) | 0.50 (±0.19) |
| Lit. r <sub>h</sub> <sup>b</sup> (nm)                        | 3.7          | 4.4          |

<sup>a</sup>Radius measurements were taken from the volume distribution <sup>b</sup>Ref. 1.

Interpretation of DLS measurements on [V(O)<sub>2</sub>(Hshed)], H<sub>2</sub>shed, [VO(Hshed)(cat)], H<sub>2</sub>cat, [VO(Hshed)(dtb)], and H<sub>2</sub>dtb Containing AOT/isooctane RMs. DLS established the formation of RMs. Samples of [V(O)<sub>2</sub>(Hshed)], H<sub>2</sub>shed, [VO(Hshed)(cat)], H<sub>2</sub>cat, [VO(Hshed)(dtb)], or H<sub>2</sub>dtb RMs were prepared using 0.10 M AOT/isooctane and the results are shown in Table S1. The average radius obtained from  $w_0$  sizes 12, and 20 compared favorably with those reported previously in the literature.<sup>1, 2, 3</sup> These results were observed with RMs prepared with and without [V(O)<sub>2</sub>(Hshed)], H<sub>2</sub>shed, [VO(Hshed)(cat)], H<sub>2</sub>cat, [VO(Hshed)(dtb)], or H<sub>2</sub>dtb. These results showed that RMs formed, and that the presence of [V(O)<sub>2</sub>(Hshed)], H<sub>2</sub>shed, [VO(Hshed)(cat)], H<sub>2</sub>cat, [VO(Hshed)(dtb)], or H<sub>2</sub>dtb did not significantly affect the size or stability of the RM.

## 3. References:

- 1. A. Maitra, J. Phys. Chem., 1984, **88**, 5122-5125.
- 2. H. F. Eicke and J. Rehak, *Helv. Chim. Acta*, 1976, **59**, 2883-2891.
- 3. M. Zulauf and H. F. Eicke, *J. Phys. Chem.*, 1979, **83**, 480-486.