Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting Information

for

Versatile coordinating abilities of acyclic N₄ and N₂P₂ ligand frameworks in conjunction with Sn[N(SiMe₃)₂]₂

Ravindra K. Raut^a, Padmini Sahoo^a, Dipti Chimnapure^a and Moumita Majumdar^{*a}

Contents

1.	Plots of NMR spectra	S2
2.	UV-Vis Spectra	S17
3.	DFT calculation	S18
4.	X-ray Data	S28

Department of Chemistry, Indian Institute of Science, Education and Research, Pune Pune-411008, Maharashtra India E-mail: <u>moumitam@iiserpune.ac.in</u>

1. Plot of NMR Spectra

S2

Figure S4. ¹³C NMR of **L2** in C_6D_6

Figure S5. ¹H NMR of **L3** in CDCl₃ ('=DCM; *=impurity)

S5

S6

---1.30

S7

Figure S12. ¹H NMR of compound 2 in CDCl₃ (* = toluene)

Figure S13. ¹⁹F NMR of compound 2 in CDCl₃

Figure S15. ¹H NMR of compound 3 in CD₃CN

Figure S16. ¹³C NMR of compound 3 in CD₃CN

Figure S17. ¹⁹F NMR of compound 3 in CD₃CN

Figure S18. ¹¹⁹Sn NMR of compound 3 in CD₃CN

Figure S19. ¹H NMR of the mixture of 3 and 4 in CD₃CN

Figure S20. ¹H NMR of **5** in toluene- d_8 (* = L3, ' = Tetrahydrofuran, " = Diethyl Ether)

Figure S21. ³¹P NMR of **5** in toluene- d_8 (* = L3)

47.28 46.12 44.95

Figure S22. ¹¹⁹Sn NMR of **5** in toluene- d_8

Figure S23. ¹H Variable Temperature NMR of **5** in toluene- d_8 (* = L3, ' = THF, " = Diethyl Ether)

Figure S24. ¹H Variable Temperature NMR of **5** in toluene- d_8 (* = L3, ' = THF, " = Diethyl Ether) (1.5 – 5 ppm scale has been zoomed)

Figure S25 Variable Temperature ³¹P NMR plots of **5** in toluene- d_8 (* = L3)

Figure S26. ¹H NMR in CDCl₃ of L obtained from the reaction between L2 and Sn[N(SiMe₃)₂]₂

Figure S27. ¹³C NMR in CDCl₃ of L obtained from the reaction between L2 and Sn[N(SiMe₃)₂]₂

Figure S28. ¹H NMR in C_6D_6 of reaction mixture obtained after 4 days from the reaction between L2 and $Sn[N(SiMe_3)_2]_2$ (* = stannylene)

Figure S29. ¹¹⁹Sn variable temperature NMR for the reaction between L2 and Sn[N(SiMe₃)₂]₂

2. UV/Vis Spectra

Figure S30. UV-Vis Spectra of 1 in Tetrahydrofuran

Figure S31. Linear Fit for UV-Vis data of 1

3. DFT Calculations

DFT calculations were performed on the experimental structures **1** and **5** at the B3LYP level of theory (6-31G(d,p) basis set for C, N, H, Si, P) and LANL2DZ for Sn using *Gaussian 09* suite of programs.^[S1] Compounds **1'** and **5'** were optimized at the stationary point with number of imaginary frequency NIMAG = 0. The monomer **5m** was optimized at the stationary point with number of imaginary frequency NIMAG = 0. The dissociation energy for the dimer **5'** were calculated in gas phase and in toluene, tetrahydrofuran and acetonitrile solvents using the Polarization Continumm Model (PCM).

Cartesian coordinated of the optimized structure 1'

Sn	-1,90600400	0.23101200	-0.75255900
Sn	1.99101000	-0.14546900	-0.88792500
Si	5.01264400	0.76301600	0.67299700
Si	-4.32898600	2,29637500	-0.00429000
Si	4 54639800	-2 07585500	-0 27374700
Si	-4 62697800	-0 37134800	1 39609800
N	-1 00423800	-1 45200900	0 30885700
N	0 86050000	0 86152100	0.68072700
N	2 12390300	2 11//5000	-1 298/8100
N	3 93648200	_0 /3121800	-0 05207700
N	-3 72590000	0.43121000	0.05207700
N	-3.72300000	1 609627000	1 75101000
N	-2.00200400	-1.09003700	-1.75191900
	0.264/0/00	0.1303/100	1.80/52000
H C	-0.68451500	0.62825500	2.08318900
	0.16959500	3.01406/00	1.64/15500
H	-0.26893100	2.60060600	2.5438/200
H	0.13244000	4.08998100	1.55932100
C	0./6558/00	2.23566100	0.69681/00
C	1.88294500	4./9444000	-1.90/00200
H	1.77339200	5.84821500	-2.14455000
С	-0.23135300	-3.76750800	-0.03005400
Н	0.50357800	-3.76723500	0.76143400
Н	-0.28779300	-4.67407400	-0.61461800
С	-1.02496700	-2.68994900	-0.30594500
С	1.24165400	4.26578100	-0.79652500
Н	0.62358500	4.90031900	-0.17618100
С	2.66012400	3.96185900	-2.72064000
Н	3.17631000	4.33890600	-3.59616000
С	-0.66777500	-2.04206600	2.69472100
Н	-1.61060400	-1.54622200	2.95293700
Н	-0.92156900	-3.07210600	2.42968600
С	-2.04035600	-2.82880700	-1.39032400
С	-0.08830100	-1.32665700	1.44766800
Н	0.87039300	-1.82006400	1.19441200
С	1.20287600	0.15892000	3.03978500
Н	2.14790600	-0.31424700	2.74394500
Н	1.43799500	1.19898500	3.28526200
С	-4.20432200	0.00790200	3.21046200
Н	-3.12393600	-0.01046600	3.38675600
Н	-4.66354000	-0.72668900	3.88307000
Н	-4.56380900	0.99813400	3.50731400
С	2.74061600	2.62245600	-2.38274700
Н	3.30681000	1.91581700	-2.98286600
С	1.38415100	2.90254600	-0.48536100
С	-3.63441200	-1.71026400	-2.70137500
Н	-4.09908900	-0.75316800	-2.92153600

С	-2.38222800	-4.04101600	-2.01554900
Н	-1.89958300	-4.96144600	-1.71664700
С	3.53641200	-3.07680900	-1.53760200
H	2.50269300	-3.27444000	-1.23570400
H	4.03299300	-4.04945600	-1.65154700
H	3.50752500	-2.60871900	-2.52736700
С	0.62838100	-0.56514900	4.26278300
H	-0.27348500	-0.04323200	4.61348400
Н	1.34831000	-0.53224900	5.08943500
С	0.26989100	-2.01099500	3.90618300
Н	1.18968700	-2.56970000	3.68088700
Н	-0.20119800	-2.51792100	4.75697000
С	-4.34710600	-2.22467900	1.12128900
H	-4.69949500	-2.54564000	0.13553800
H	-4.93192300	-2.77414900	1.86914300
Н	-3.30359000	-2.52463100	1.22736600
С	-3.01419300	3.45011500	-0.74938800
H	-2.10528000	3.48874600	-0.13984000
H	-3.43870200	4.46200400	-0.78393100
Н	-2.72152600	3.18267700	-1.76923100
С	-4.88684900	3.18092000	1.58234700
Н	-5.71531700	2.68797900	2.09832700
H	-5.21443700	4.19893600	1.33844500
Н	-4.05583800	3.26385300	2.29152400
С	4.14733500	2.24767300	1.47300800
H	3.75890800	2.96514400	0.74646900
H	4.89347700	2.77881700	2.07681900
Н	3.32860400	1.96277300	2.13700400
С	6.07669300	0.04048900	2.07654500
H	5.44865800	-0.28897000	2.91183900
H	6.74605800	0.82091300	2.45866200
H	6.70113200	-0.80560100	1.77763200
С	6.32422800	-2.13193600	-0.94663800
Н	6.38315600	-1.65382500	-1.93093300
H	6.63082500	-3.17753600	-1.07215500
H	7.06404900	-1.65164600	-0.30026100
С	-3.36275300	-4.05975800	-2.99648300
H	-3.63071000	-4.99669200	-3.47554400
С	-4.01073600	-2.87141500	-3.35404800
H	-4.78787200	-2.85030800	-4.10969800
С	-6.51428000	-0.17520500	1.21920700
H	-6.88484900	0.83252700	1.42728900
H	-7.00801900	-0.85358600	1.92618400
H	-6.84904600	-0.45369000	0.21377800
С	4.48055500	-3.08150000	1.33661600
H	5.10748500	-2.65794100	2.12632200
H	4.81305400	-4.11228600	1.16345200
H	3.45447800	-3.12751100	1.72038200
С	6.19068600	1.49733800	-0.62834900
H	6.82384200	0.73536700	-1.09225600
H	6.84934200	2.24926900	-0.17675200
H	5.63059300	1.99372200	-1.42969200
С	-5.77248300	2.31347400	-1.24245400
H	-5.46051700	1.88482000	-2.20282400
H	-6.10469800	3.34072900	-1.43651700
H	-6.63865800	1.74426500	-0.89355600

Time Dependent DFT Calculations of 1'

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.3580 eV 525.81 nm f=0.0030 <S**2>=0.000 178 ->179 0.69865 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2746.92641360Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 2.7054 eV 458.28 nm f=0.0264 <S**2>=0.000 177 ->179 0.57394 178 ->180 0.38002 Singlet-A 2.7273 eV 454.60 nm f=0.0477 Excited State 3: <S**2>=0.000 177 ->179 -0.38336 178 ->180 0.56739 178 ->182 -0.12465 Excited State 4: Singlet-A 2.9196 eV 424.66 nm f=0.0189 <S**2>=0.000 176 ->179 0.69263 Excited State 5: Singlet-A 2.9759 eV 416.63 nm f=0.0049 <S**2>=0.000 177 ->180 0.17901 178 ->180 0.13550 178 ->181 0.20399 178 ->182 0.63292 Excited State 6: Singlet-A 3.0128 eV 411.53 nm f=0.0040 <S**2>=0.000 177 ->181 0.15119 178 ->181 0.64777 178 ->182 -0.20297 Excited State 7: Singlet-A 3.1234 eV 396.95 nm f=0.0249 <S**2>=0.000 177 ->180 0.66888 -0.17884 178 ->182 Singlet-A 3.2549 eV 380.92 nm f=0.0214 Excited State 8: <S**2>=0.000 177 ->181 0.66563 -0.15531 178 ->181 Excited State 9: Singlet-A 3.4178 eV 362.76 nm f=0.0066 <S**2>=0.000 176 ->180 0.62996 177 ->182 0.28347 Excited State 10: Singlet-A 3.4397 eV 360.45 nm f=0.0064 <S**2>=0.000 176 ->180 -0.27491 176 ->182 -0.13562

0.62404 177 ->182 3.4535 eV 359.01 nm f=0.0098 Excited State 11: Singlet-A <S**2>=0.000 0.53599 174 ->179 0.43738 175 ->179 176 ->180 -0.11394 Singlet-A 3.4906 eV 355.19 nm f=0.0003 Excited State 12: <S**2>=0.000 174 ->179 -0.44417 175 ->179 0.54695 Excited State 13: Singlet-A 3.5606 eV 348.21 nm f=0.0012 <S**2>=0.000 0.69244 176 ->181 Excited State 14: Singlet-A 3.7746 eV 328.47 nm f=0.0013 <S**2>=0.000 175 ->180 0.67311 178 ->183 -0.19413 Singlet-A 3.7786 eV 328.12 nm f=0.0024 Excited State 15: <S**2>=0.000 175 ->180 0.15340 176 ->182 -0.33801 178 ->183 0.58673 Excited State 16: Singlet-A 3.7974 eV 326.49 nm f=0.0016 <S**2>=0.000 175 ->180 0.12495 0.59736 176 ->182 177 ->182 0.11696 178 ->183 0.32785 3.8753 eV 319.93 nm f=0.0384 Excited State 17: Singlet-A <S**2>=0.000 173 ->179 0.68678 Excited State 18: Singlet-A 4.0377 eV 307.07 nm f=0.0142 <S**2>=0.000 173 ->180 0.13360 174 ->180 0.48056 177 ->183 0.48502 Excited State 19: Singlet-A 4.0454 eV 306.48 nm f=0.0046 <S**2>=0.000 173 ->180 -0.11864 174 ->180 -0.46800 177 ->183 0.50509 Excited State 20: 4.1125 eV 301.48 nm f=0.0028 Singlet-A <S**2>=0.000 174 ->181 0.44416 175 ->181 0.51603 0.17145 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 20 LETran= 370.

Cartesian Coordinates of optimized structure 5'

Sn	-0.33149300	1.42124100	0.94841600
D	1 33389100	3 51/58800	1 18391200
-	1.33309100	3.31430000	4.10554200
P	-4.38614100	-2.25113900	2.50627500
Ν	-0.20532700	-0.81019900	1.25889000
N	1 50335200	1 29730100	1 70170300
IN	1.39333200	1.20/30100	1./01/0300
C	0.55457600	2.08060000	5.05986300
С	3.10709200	2.98325100	4.01516000
C	0 94969400	2 00642500	5 02/05100
L	-0.84868400	2.00642500	5.03485100
Н	-1.41564800	2.77695000	4.51822100
С	-1 68948300	-2 86743400	1 81461500
с с	1.00510500	2.00,10100	1.01101000
C	2.62548400	2.30496800	1.5/423200
Н	2.13529200	3.26965700	1.39779700
ц	3 27106300	2 12066000	0 69593400
11	5.27100500	2.12000000	0.09595400
C	-5.84941400	-3.36519300	2.26656600
С	4.03094200	3.13479200	5.06133100
TT	2 70466700	2 57227700	5 00011700
П	3.70400700	3.37327700	3.99911700
С	-2.95655900	-3.39936500	2.17985800
С	3.54701100	2,44367100	2.78322900
о С	4 24071000	2.04540000	4 24707700
L	-4.349/1900	-2.04549000	4.34/8//00
С	-0.80106900	-0.05445900	6.30043700
н	-1.32746900	-0.87950000	6.77008900
	1 0000	1 0 0 7 0 1 0 0	F 71204F00
L	1.26659500	1.063/0100	5./1394500
Н	2.35094400	1.09566400	5.74061700
С	0 92615200	-0 99598800	2 21002900
	1 00640400	0.999990000	2.21002900
H	1.28643400	-2.03209000	2.22606300
Н	0.58329700	-0.75920700	3.22710600
С	-1 48291400	-1 35022800	1 78015500
	1.10291100	1.33022000	1 101005000
H	-2.29/68200	-0.92/90200	1.18138200
Н	-1.63682200	-0.96579400	2.80211500
С	-3.13217600	-4.79166500	2 20944400
	4 10247600	E 10717200	2 47641500
H	-4.10247600	-3.19/1/200	2.4/641300
C	-0.85905500	-5.14895000	1.51672800
Н	-0.03977100	-5.80990400	1.24886100
C	-0 66682100	-3 76600000	1 48688500
	0.00002100	3.70000000	1 10101000
H	0.30419100	-3.38925300	1.13131800
С	2.08620200	-0.07043400	1.85227300
ц	2 83408500	-0 13432500	2 65709600
	2.09400900	0.13432300	2.00709000
H	2.59641900	-0.44498100	0.93904400
С	1.44797200	4.78130800	5.53749600
С	0 59347000	0 00395900	6 32703200
	1 1 61 97 990	0.00000000	6.02/00200
H	1.1618/800	-0.//649400	6.82629400
С	1.82090600	6.08341700	5.15919500
н	2 04760400	6 29425000	4 11667100
	2.01/00100	2 00710600	2 21175000
L	-0.0200/100	-3.88/10600	3.311/5200
Н	-6.35147100	-3.68823900	4.34229200
С	4 88523800	2 04595300	2 66227800
	E 21010700	1 61001100	1 71066400
H	5.21919700	1.01001100	1./1966400
C	-2.09552400	-5.66753200	1.88643000
Н	-2.26025300	-6.74073500	1,91781400
C	5 05622200	0 05422500	1 00205700
	5.05022500	-0.35452500	4.00200/00
Н	-5.56753500	-0.26765000	4.21274900
С	-6.23825300	-3.63856900	0.94263800
ч	-5 6588/100	-3 23750000	0 11511700
	J.0J004100	0.0000000	
C	-3.68025900	-2.90765800	5.22980700
Н	-3.12294200	-3.75262600	4.83793200
С	1,13373200	4.54423700	6.88453400
~	1.100,0200	2 55001000	7 20101100
п	0.03328600	3.32081000	1.20191100
С	5.36249100	2.74050700	4.91906300

H	6.05601700	2.86592700	5.74608400
С	-1.52239200	0.95272600	5.65444300
H	-2.60693100	0.90762000	5.62611800
С	5.79114000	2.18627000	3.71459900
H	6.82273400	1.86819900	3.59060200
С	1.20109400	5.57541500	7.82534100
Н	0.95216700	5.37216700	8.86357400
С	-5.11174600	-0.74285900	6.26134200
Н	-5.67007900	0.10100300	6.65700100
С	-4.44575400	-1.61227600	7.12890000
H	-4.48446200	-1.44791000	8.20199900
С	1.90098600	7.10940500	6.09948700
U H	2.19701000	8.10701500	5.78651000
С	-3.72771100	-2.69162900	6.60927400
U H	-3,20805600	-3.37216300	7,27854300
C	-7 75527600	-4 66453200	3 04033000
U H	-8 34533700	-5 05859900	3 86339800
C	1 58847400	6 85838400	7 43799300
ч	1 64083100	7 65873200	8 17080100
C	-8 12183100	-4 93936500	1 72297000
u u	-8 99903000	-5 54524900	1 51/33500
C	-7 35608700	-1 12606200	0 6729/900
u u	-7 63331300	-4.63137800	-0 35724700
Cn	0 33149300	-1 12121100	-0.04941600
	-1 33390100	-1.42124100	-0.94041000
r D	-1.33309100	2 25113000	-2 50627500
L	4.30014100	2.23113900	_1 25990000
IN NT	-1 59335200	-1 29730100	-1 70170300
n C	-1.59555200	-2.08060000	-5.05086300
C	-3 10709200	-2.08000000	-1.01516000
C	-3.10709200	-2.90525100	-5.03/95100
	1 41564900	-2.00042500	-5.05405100
п С	1 69049200	-2.77095000	-4.JI022I00
C	2 62540300	2.00/43400	-1.01401300
	-2.02340400	-2.30490000	-1.3/423200
	-2.13529200	-3.20903700	-1.39779700
n C	-3.27100300	-2.12000000	-0.09393400
C	3.84941400	2 12470200	-2.20030000
	-4.03094200	-3.134/9200	-5.00133100
	-3.70400700	-3.3/32//00	-3.99911700
C	2.95055900	2 44267100	-2.1/903000
C	-3.54701100	-2.44507100	-2.70322900
C	4.34971900	2.04349000	-4.34/0//00
U U	1 32746900	0.03443900	-6.77008000
п С	1 26650500	1 06270100	5 71204500
	-1.20059500	-1.00370100	-5.71594500
п С	-2.33094400	-1.09500400	-3.74001700
	1 29642400	0.99596600	-2.21002900
	-1.20043400	2.03209000	-2.22000300
п С	1 49201400	1 250220700	-3.22710000
	2 20769200	1.33022800	-1.78013300
n u	2.29700200	0.92790200	-2 90211500
п С	1,00002200 2,10017600	U. JUJ / J4UU 1 70166500	-2 20044400
	J.IJZI/000	4./91003UU 5.10717000	-2.20944400
п С	4.1U24/0UU 0.05005500	J.IJ/I/200	-2.4/0413UU
	0.02077100	5.14895000	-1.310/20UU
п С	0.039//100	J.80990400	-1.24886100
	U.66682100	3./6600000	-1.48688500
п	-0.30419100	3.38925300	-1.19191800
	-2.08620200	0.0/043400	-1.8522/300
Н	-2.83408500	0.13432500	-2.65/09600

Н	-2.59641900	0.44498100	-0.93904400
С	-1.44797200	-4.78130800	-5.53749600
С	-0.59347000	-0.00395900	-6.32703200
Н	-1.16187800	0.77649400	-6.82629400
С	-1.82090600	-6.08341700	-5.15919500
Н	-2.04760400	-6.29425000	-4.11667100
С	6.62607100	3.88710600	-3.31175200
Н	6.35147100	3.68823900	-4.34229200
С	-4.88523800	-2.04595300	-2.66227800
Н	-5.21919700	-1.61801100	-1.71966400
С	2.09552400	5.66753200	-1.88643000
Н	2.26025300	6.74073500	-1.91781400
С	5.05622300	0.95432500	-4.88285700
Н	5.56753500	0.26765000	-4.21274900
С	6.23825300	3.63856900	-0.94263800
Н	5.65884100	3.23759900	-0.11511700
С	3.68025900	2.90765800	-5.22980700
Н	3.12294200	3.75262600	-4.83793200
С	-1.13373200	-4.54423700	-6.88453400
Н	-0.83328600	-3.55081000	-7.20191100
С	-5.36249100	-2.74050700	-4.91906300
Н	-6.05601700	-2.86592700	-5.74608400
С	1.52239200	-0.95272600	-5.65444300
Н	2.60693100	-0.90762000	-5.62611800
С	-5.79114000	-2.18627000	-3.71459900
Н	-6.82273400	-1.86819900	-3.59060200
С	-1.20109400	-5.57541500	-7.82534100
Н	-0.95216700	-5.37216700	-8.86357400
С	5.11174600	0.74285900	-6.26134200
Н	5.67007900	-0.10100300	-6.65700100
С	4.44575400	1.61227600	-7.12890000
Н	4.48446200	1.44791000	-8.20199900
С	-1.90098600	-7.10940500	-6.09948700
Н	-2.19701000	-8.10701500	-5.78651000
С	3.72771100	2.69162900	-6.60927400
Н	3.20805600	3.37216300	-7.27854300
С	7.75527600	4.66453200	-3.04033000
Н	8.34533700	5.05859900	-3.86339800
С	-1.58847400	-6.85838400	-7.43799300
Н	-1.64083100	-7.65873200	-8.17080100
С	8.12183100	4.93936500	-1.72297000
Н	8.99903000	5.54524900	-1.51433500
С	7.35608700	4.42606200	-0.67294900
Н	7.63331300	4.63137800	0.35724700

Contour Plots of 5' at 0.03 a.u.

Cartesian Coordinates of optimized structure 5m

Optimized structure 5m

Sn	1.05478900	-1.97944900	-1.61284300
P	4.14674500	0.17713400	-0.70508100
P	-4.42025900	0.58700900	-0.71186700
N	-0.49594800	-1.70552200	-0.31787900
N	2.07859600	-2.24696700	0.12587800
С	2.74856400	1.29862300	-0.23653800
С	4.67833600	-0.57143600	0.91267800
С	1.97097300	1.81483500	-1.28879300
Н	2.23156600	1.57427700	-2.31713700
С	-3.01108200	-1.80336900	-0.13288600
С	3.43614100	-2.74021100	0.28598500
Н	3.91047000	-2.76550400	-0.70275300
Н	3.44074300	-3.77777900	0.66350300
С	-6.25274200	0.85922800	-0.75335600
С	5.49708100	0.12906600	1.81220700
Н	5.81189800	1.13916600	1.56962900
С	-4.27208300	-1.15834600	-0.08338400
С	4.29978900	-1.90014200	1.22289500
С	-3,91218400	1.60517300	0.75341900
С	0.51367200	2.93519200	0.28346900
H	-0.35934800	3.54744600	0.48832700

С	2.388	67400	1.6214780	0 1.08042200
Η	2.970	94000	1.2325440	0 1.90948500
С	-0.0642	23000	-1.5548400	0 1.07682400
Η	-0.8423	19900	-1.9033690	0 1.77092500
Н	0.1173	10100	-0.4906900	0 1.30347600
С	-1.761	84200	-1.0680950	0 -0.63026700
Н	-1.850	69900	-0.9591190	0 -1.72084200
н	-1.772	03100	-0.0406320	0 -0.23158600
Ċ	-5 391	47500	-1 8876090	0 0 34666700
ц	-6 362	36000	-1 4052420	0 0.34000700
C	0.502	22600	2 9567650	0 0.50207000
	-4.041	40200	-3.8387830	0 0.07737000
H	-3.943	48300	-4.8996380	0.96/1/500
С	-2.920	36700	-3.1445580	0 0.25022600
Н	-1.9472	26200	-3.6229460	0 0.19954200
С	1.2193	36000	-2.3594610	0 1.30487800
Η	1.7293	16100	-1.9828050	0 2.20296100
Η	0.9710	02100	-3.4193780	0 1.50354200
С	5.519	91200	1.3807520	0 -1.03562400
С	1.279	60100	2.4320580	0 1.33638900
Н	1.008	78900	2.6646150	0 2.36269300
С	6.664	82500	0.8789550	0 -1.67880800
Н	6.713	20200	-0.1749100	0 -1.94247600
C	-7 010	53400	1 3380840	0 0 32710500
с ц	-6 524	33800	1 55/0390	0 1 27321300
C	0.524	50000	2 4650200	0 2 42540500
	4./41	69400	-2.4050500	0 2.42549500
H	4.451	09300	-3.4865060	0 2.66058900
C	-5.282	/8/00	-3.2261970	0 0.72737700
Н	-6.164	64300	-3.7671860	0 1.05936700
С	-3.712	40700	2.9806470	0 0.54080900
Η	-3.8698	86100	3.3976850	0 -0.45103200
С	-6.9078	80700	0.6004200	0 -1.96925800
Η	-6.332	59300	0.2492840	0 -2.82234100
С	-3.6852	27400	1.0868020	0 2.03721700
Н	-3.8312	17500	0.0269610	0 2.22136600
С	5.470	51300	2.7501600	0 -0.73252200
Н	4.592	89100	3.1637020	0 -0.24591000
С	5.926	36800	-0.4497310	0 3.00779000
Н	6.556	78200	0.1163900	0 3.68786200
C	0.867	67500	2 6300400	0 -1 03295900
ц	0.278	46800	3 0163790	0 -1 85992800
C	5 5/5	10700	_1 7535/90	0 2 31737100
	5.545		2 2176070	0 3.31737100
п	J.0720	22100	-2.21/09/0	0 4.24349000 0 1.05310600
C	6.540	23100	3.5898050	0 -1.05319600
Н	6.483	/6800	4.64/9650	0 -0.81213800
С	-3.3180	00100	3.8170070	0 1.58515500
Η	-3.1818	88300	4.8799910	0 1.40466600
С	-3.092	69100	3.2871270	0 2.85883900
Η	-2.778	15200	3.9354080	0 3.67194300
С	7.737	48800	1.7141790	0 -1.98797800
Н	8.615	48400	1.3058110	0 -2.48084700
С	-3.273	47100	1.9212060	0 3.07974900
Н	-3.100	00500	1.5020450	0 4.06722300
С	-8.385	44500	1.5434000	0 0.19601500
H	-8 956	76300	1,9169170	0 1.04157600
Ċ	יידא ר וררא ר	11600	3 0748570	0 -1 67726200
с u	2 507	67900	3 77978510	0 _1 Q260/200
11 C	0.005		1 260000	0 _1 01207/00
U 11	-9.025		1,400070U	
H ~	-10.095		1.42980/0	0 -1.11392200
C	-8.283	48900	0./941090	0 -2.09/12200
H	-8.772	99000	0.5848340	u -3.04424100

Dissociation Energy of the Dimer 5'

Medium	E₅' (in Hartrees)	E _{5m} (in Hartrees)	Δ E (in Hartrees)	Δ E (in Kcal/mol)
Gas-phase	-4683.1152923	-2341.5438911	0.0275101	17.3
Toluene	-4683.1242152	-2341.5487781	0.026659	16.7
Tetrahydrofuran	-4683.1318814	-2341.5529881	0.0259052	16.3
Acetonitrile	-4683.135949	-2341.5552483	0.0254524	16.0

4. X-ray Data

Experimental Detail

Single-crystal data was collected on a Bruker SMART APEX four-circle diffractometer equipped with a CMOS photon 100 detector (Bruker Systems Inc.) and with a Cu K α radiation (1.5418 Å). The incident X-ray beam was focused and monochromated using Microfocus (I μ S). Crystals were mounted on nylon Cryo loops with Paratone-N oil. Data was collected at 100(2) K. Data was integrated using Bruker SAINT software and was corrected for absorption using SADABS. Structure was solved by Intrinsic Phasing module of the Direct methods and refined using the SHELXL-2017/1 (Sheldrick, 2017) software suite. All non-hydrogen atoms were located from iterative examination of difference F-maps following which the structure was refined using least-squares method. Hydrogen atoms were placed geometrically and placed in a riding model.

	1
Empirical Formula	$C_{32}H_{58}N_6Si_4Sn_2$
Formula Weight [g mol ⁻¹]	876.58
Crystal colour, shape	Orange. Plates
Crystal Size (mm)	0.09 x 0.08 x 0.07
Crystal System	Monoclinic
Space Group	P 21/n
Formula units	4
Temperature [K]	100 (2)
Unit cell dimensions [Å] and [°]	a = 11.7813(13)
	b = 25.808(3)
	c = 14.0899(15)
	$\alpha = 90$
	$\beta = 109.687(6)$
	$\gamma = 90$
Cell volume [Å ³]	4033.7 (8)
$\rho_{\text{calc.}} [\text{g cm}^{-3}]$	1.443
μ (Cu K _{α})[mm ⁻¹]	11.209
$ heta_{\min}$ / $ heta_{\max}$ []	3.425 - 66.676
Reflections measured	36575
Independent Reflections	7100 [R(int) = 0.1359]
$\mathbf{R}_1(I > 2\sigma(I))$	0.0543
wR_2 (all data)	0.1567
GooF	0.982
Largest diff. peak and hole [e Å-3]	1.333/ -0.957

Table S1: Crystal data and structure refinement for compound 1

Table S2:	Crystal	data and	structure	refinement	for com	pound 2
-----------	---------	----------	-----------	------------	---------	-----------

	2
Empirical Formula	$C_{74}H_{43}B_2F_{30}N_4Sn$
Formula Weight [g mol ⁻¹]	1692.43
Crystal colour, shape	Colourless, Plate
Crystal Size (mm)	0.09 x 0.08 x 0.06
Crystal System	Monoclinic
Space Group	P 21/n
Formula units	4
Temperature [K]	100 (2)
Unit cell dimensions [Å] and [°]	a = 10.2239(8)
	b = 15.6566(12)
	c = 41.352(3)
	$\alpha = 90$
	$\beta = 95.994(4)$
	$\gamma = 90$
Cell volume [Å ³]	6583.1 (9)
$ ho_{\text{calc.}} [\text{g cm}^{-3}]$	1.708
μ (Cu K _a)[mm ⁻¹]	4.311
$ heta_{\min} / heta_{\max} [$	3.020 - 66.889
Reflections measured	84616
Independent Reflections	11636 [R(int) = 0.1495]
$\mathbf{R}_1(I > 2\sigma(I))$	0.0392
wR_2 (all data)	0.0946
GooF	1.018
Largest diff. peak and hole [e Å ⁻³]	0.620/ -0.581

 Table S3: Crystal data and structure refinement for compound 3

	3
Empirical Formula	$C_{22}H_{23}F_6N_4O_6S_2Sn$
Formula Weight [g mol ⁻¹]	736.25
Crystal colour, shape	Colourless, Blocks
Crystal Size (mm)	0.03x 0.03 x 0.02
Crystal System	Triclinic
Space Group	P -1
Formula units	2
Temperature [K]	100 (2)
Unit cell dimensions [Å] and [°]	a = 8.182(15)
	b = 11.154(14)
	c = 16.25(2)
	$\alpha = 72.46(13)$
	$\beta = 79.32(13)$
	$\gamma = 73.70(12)$
Cell volume [Å ³]	1349 (4)
$\rho_{\text{calc.}} [\text{g cm}^{-3}]$	1.812
μ (Cu K _a)[mm ⁻¹]	9.789
θ_{\min} / θ_{\max} []	2.869 - 66.826
Reflections measured	12140
Independent Reflections	4728 [R(int) = 0.1028]
$\mathbf{R}_1(I > 2\sigma(I))$	0.0613
wR_2 (all data)	0.1534
GooF	0.995
Largest diff. peak and hole [e Å ⁻³]	1.321 / -0.846

	4
Empirical Formula	$C_{24}H_{31}F_3N_4O_3SSiSn$
Formula Weight [g mol ⁻¹]	659.37
Crystal colour, shape	Plates, Pale Yellow
Crystal Size (mm)	0.05 x 0.02 x 0.01
Crystal System	Monoclinic
Space Group	P 21/c
Formula units	4
Temperature [K]	100 (2)
Unit cell dimensions [Å] and [°]	a = 16.533(4)
	b = 10.968(4)
	c = 17.061(7)
	$\alpha = 90$
	$\beta = 117.43(3)$
	$\gamma = 90$
Cell volume [Å ³]	2746.1(17)
$ ho_{\text{calc.}} [\text{g cm}^{-3}]$	1.595
μ (Cu K _{α})[mm ⁻¹]	9.004
$\theta_{\min} / \theta_{\max}$ []	3.011 - 66.956
Reflections measured	28820
Independent Reflections	4857 [R (int) = 0.1443]
$\mathbf{R}_1(I \ge 2\sigma(I))$	0.0571
wR_2 (all data)	0.1125
GooF	1.045
Largest diff. peak and hole [e Å ⁻³]	0.717 /-0.866

Table S4: Crystal data and structure refinement for compound 4

Table S5: Crystal data and structure refinement for compound 5

	5
Empirical Formula	$C_{80}H_{72}N_4P_4Sn_2$
Formula Weight [g mol ⁻¹]	1450.67
Crystal colour, shape	Colourless. Block
Crystal Size (mm)	0.05 x 0.04 x 0.03
Crystal System	Triclinic
Space Group	P -1
Formula units	1
Temperature [K]	100 (2)
Unit cell dimensions [Å] and [°]	a = 10.4508(7)
	b = 11.1315(7)
	c = 15.4211(10)
	$\alpha = 81.375$ (4)
	$\beta = 75.530$ (4)
	$\gamma = 81.525$ (4)
Cell volume [Å ³]	1706.1 (2)
$ ho_{ m calc.} [m g \ m cm^{-3}]$	1.412
μ (Cu K _a)[mm ⁻¹]	7.072
$ heta_{\min}$ / $ heta_{\max}$ []	2.980 - 67.134
Reflections measured	19241
Independent Reflections	6039 [R (int) = 0.0780]
$\mathbf{R}_1 \left(I > 2\sigma(I) \right)$	0.0439
wR_2 (all data)	0.0985
GooF	1.045
Largest diff. peak and hole [e Å ⁻³]	1.941 /-0.648

X-Ray Structure

Figure S32. Molecular structure of **4** in the solid state (thermal ellipsoids at 30%, H atoms and triflate counter anions are omitted for clarity). Selected bond lengths [Å]: Sn1-N1 2.323(5), Sn1-N2 2.095(6), Sn1-N4 2.323(5), Si1-N3 1.791(6).

References

[S1] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.