## **Electronic Supplementary Information**

## A hexagonal bipyramidal ytterbium complex exhibiting field-induced single-ion magnet behavior

Wen Zhao,<sup>a</sup> Huihui Cui,<sup>b</sup> Xiao-Yun Chen,<sup>a</sup> Gangji Yi,<sup>a</sup> Lei Chen,<sup>\*a</sup> Aihua Yuan<sup>\*a</sup> and Cheng-Lin Luo<sup>\*c</sup>

<sup>a</sup>School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China. E-mail: chenlei@just.edu.cn; aihua.yuan@just.edu.cn.

<sup>b</sup>State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.

<sup>c</sup>Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China. E-mail: clluo@njnu.edu.cn.

|                                   | 1-Yb                         | 2-Tb                         |  |
|-----------------------------------|------------------------------|------------------------------|--|
| Molecular formula                 | $C_{24}H_{54}N_3O_{11}P_2Yb$ | $C_{24}H_{54}N_3O_{11}P_2Tb$ |  |
| CCDC no                           | 1885763                      | 1885764                      |  |
| Formula weight                    | 795.68                       | 781.56                       |  |
| Temperature                       | 296(2) K                     | 296(2) K                     |  |
| Wavelength / Å                    | 0.71073                      | 0.71073                      |  |
| crystal system                    | Hexagonal                    | Hexagonal                    |  |
| Space group                       | P63/mmc                      | P63/mmc                      |  |
| <i>a</i> / Å                      | 13.8721(8)                   | 13.9163(14)                  |  |
| <i>b</i> / Å                      | 13.8721(8)                   | 13.9163(14)                  |  |
| <i>c</i> / Å                      | 15.0022(18)                  | 15.107(4)                    |  |
| $\alpha / \deg$                   | 90                           | 90                           |  |
| $\beta$ / deg                     | 90                           | 90                           |  |
| γ∕deg                             | 120                          | 120                          |  |
| $V/ Å^3$                          | 2500.2(4)                    | 2533.7(8)                    |  |
| Ζ                                 | 2                            | 2                            |  |
| $D_{calc}$ , g/cm <sup>3</sup>    | 1.057                        | 1.024                        |  |
| $\mu$ / mm <sup>-1</sup>          | 1.972                        | 1.496                        |  |
| F(000)                            | 814                          | 804                          |  |
| Goodness-of-fit on $F^2$          | 1.165                        | 1.118                        |  |
| Final R indices [I                | $R_1 = 0.0756,$              | $R_1 = 0.0763,$              |  |
| $> 2\sigma(I)$ ] <sup>a</sup>     | $wR_2 = 0.2339$              | $wR_2 = 0.2075$              |  |
| R indices (all data) <sup>a</sup> | $R_1 = 0.0840,$              | $R_1 = 0.0818,$              |  |
|                                   | $wR_2 = 0.2410$              | $wR_2 = 0.2111$              |  |

Table S1. Crystal data and structure refinement for 1-Yb and 2-Tb.

<sup>a</sup>wR<sub>2</sub> = [ $\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(Fo^2)^2]$ ]<sup>1/2</sup>, R<sub>1</sub> =  $\Sigma||F_o| - |F_c||/\Sigma|F_o|$ .

Table S2 The results of the continuous shape measure (CSM) analyses for 1-Yb and 2-Tb SHAPE software.  $^{\rm S1}$ 

| CSM                                    | 1-Yb  | 2-Tb  |
|----------------------------------------|-------|-------|
| Hexagonal bipyramid (D <sub>6h</sub> ) | 0.584 | 0.637 |
| Cube $(O_{\rm h})$                     | 9.205 | 9.205 |



**Figure S1** The field-dependence of magnetization at the temperature range of 2-10 K for **1-Yb**. The solid lines are for eye guide.



**Figure S2** The field-dependence of magnetization at the temperature range of 1.8-10 K for **2-Tb**. The solid lines are for eye guide.



**Figure S3** Frequency dependence of out-of-phase ( $\chi_M$ '') ac susceptibility at 1.8 K under the different applied static fields from 0 to 3.0 kOe for **1-Yb**. The solid lines are for eye guide.



**Figure S4** Frequency dependence of out-of-phase ( $\chi_M$ '') ac susceptibility at 1.8 K under the external field of 0 and 1kOe for **2-Tb**. The solid lines are for eye guide.



**Figure S5** Temperature-dependence of the in-phase and out-of-phase susceptibility between 1 and 1000 Hz under a 1.0 kOe applied dc field.



**Figure S6** Cole-Cole plot obtained from the ac susceptibility data under a 1.0 kOe dc field in the temperature range of 1.8-4 K for **1-Yb**. Solid lines represent the best fits to a generalized Debye model.

| 1     | 2     | 0 1   |        |      |
|-------|-------|-------|--------|------|
| T / K | χs    | χT    | τ      | а    |
| 1.8   | 0.047 | 0.571 | 0.0169 | 0.12 |
| 1.9   | 0.043 | 0.542 | 0.0140 | 0.12 |
| 2.0   | 0.041 | 0.512 | 0.0116 | 0.11 |
| 2.2   | 0.038 | 0.467 | 0.0079 | 0.09 |
| 2.4   | 0.033 | 0.426 | 0.0052 | 0.08 |
| 2.6   | 0.030 | 0.395 | 0.0034 | 0.07 |
| 2.8   | 0.026 | 0.367 | 0.0022 | 0.06 |
| 3.0   | 0.020 | 0.342 | 0.0014 | 0.06 |
| 3.2   | 0.017 | 0.322 | 0.0009 | 0.06 |
| 3.4   | 0.009 | 0.303 | 0.0006 | 0.06 |
| 3.6   | ~0    | 0.284 | 0.0004 | 0.05 |
| 3.8   | ~0    | 0.270 | 0.0003 | 0.03 |
| 4.0   | ~0    | 0.257 | 0.0002 | 0.02 |

Table S3 The parameters obtained by fitting Cole-Cole plot for 1-Yb.



**Figure S7** Relaxation time of the magnetization  $ln(\tau)$  vs  $T^{-1}$  plots for **1-Yb**. The solid lines represent Arrhenius fits.

| Table S  | 4 Wave   | functions  | with de | finite p       | rojection | of the tot | al moment | $\mid m_J >$ | for the | lowest | two |
|----------|----------|------------|---------|----------------|-----------|------------|-----------|--------------|---------|--------|-----|
| spin-orb | it doubl | ets of 1-Y | and 2-  | <b>Fb</b> usin | g CASSO   | CF/RASSI   | with MOL  | CAS 8.       | 2.      |        |     |

| 1-Yb | 0.0   | 8% -1/2>+92% +1/2>  |
|------|-------|---------------------|
|      | 0.0   | 92% -1/2>+8% +1/2>  |
|      | 233.0 | 15% -5/2>+85% +7/2> |
|      | 233.0 | 15% +5/2>+85% -7/2> |
| 2-Tb | 0.0   | 50% -5>+50% +5>     |
|      | 0.5   | 50% -5>+50% +5>     |
|      | 36.8  | 50% -4>+50% +4>     |
|      | 37.0  | 50% -4>+50% +4>     |

**Table S5.** Calculated energy levels (cm<sup>-1</sup>),  $g(g_x, g_y, g_z)$  tensors and  $m_J$  values of the lowest seven or four spin-orbit states of **1-Yb** and **2-Tb** using CASSCF/RASSI with MOLCAS 8.2.

|     | 1-Yb        |       |           | 2-Tb        |        |       |  |
|-----|-------------|-------|-----------|-------------|--------|-------|--|
|     | $E/cm^{-1}$ | g     | $m_J$     | $E/cm^{-1}$ | g      | $m_J$ |  |
|     |             | 4.575 |           | 0.0         | 0.000  |       |  |
| 1 0 | 0.0         | 4.553 | $\pm 1/2$ | 0.5         | 0.000  | ±5    |  |
|     |             | 1.171 |           | 0.5         | 15.023 |       |  |

|   |       | 2 177 |       |       | 0.000  |    |
|---|-------|-------|-------|-------|--------|----|
| 2 | 222.0 | 2.177 | +7/2  | 36.8  | 0.000  | ±4 |
| 2 | 233.0 | 2.215 | = 1/2 | 27.0  | 0.000  | ±4 |
|   |       | 5.940 |       | 37.0  | 11.681 |    |
|   |       | 0.009 |       | 143.2 | 0.000  | -3 |
| 3 | 267.9 | 0.031 | ±3/2  |       | 0.000  |    |
|   |       | 3.454 |       | 167.8 | 0.066  | +6 |
|   |       | 2.154 |       | 168.3 | 0.000  | -6 |
| 4 | 525.2 | 2.158 | ±5/2  |       | 0.000  |    |
|   |       | 3.664 |       | 209.7 | 0.133  | +3 |
|   |       |       |       | 346.6 | 0.000  |    |
| 5 |       |       |       |       | 0.000  | ±2 |
|   |       |       |       | 346.7 | 5.307  |    |
|   |       |       |       | 481.1 | 0.000  |    |
| 6 |       |       |       |       | 0.000  | ±1 |
|   |       |       |       | 491.6 | 2.558  |    |
| 7 |       |       |       | 544.1 |        | 0  |



Figure S8 Calculated orientations of the local magnetic axes in the ground spin-orbit states on  $Yb^{III}$  and  $Tb^{III}$  ions of 1-Yb and 2-Tb.

## References

S1 a) D. Casanova, M. Llunell, P. Alemany, S. Alvarez, *Chem. -Eur. J.* 2005, 11, 1479; b) S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, *Coord. Chem. Rev.* 2005, 249, 1693.