Trifluoromethylation for affecting the structural, electronic and redox properties of cobalt corroles.

Kolanu Sudhakar,[†] Atif Mahammed,[†] Natalia Fridman,[†] Zeev Gross^{*,†}

[†] Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.

Supporting information

	Table of Contents	<u>Page No.</u>
Fig. S1	¹ H NMR of ((CF ₃) ₂ -tpfc)Co(py) ₂	S3
Fig. S2	¹⁹ F NMR of ((CF₃)₂-tpfc)Co(py) ₂	S3
Fig. S4	¹ H NMR of ((CF ₃) ₃ -tpfc)Co(py) ₂	S4
Fig. S5	¹⁹ F NMR of ((CF₃)₃-tpfc)Co(py) ₂	S4
Fig. S7	¹ H NMR of ((CF ₃) ₄ -tpfc)Co(py) ₂	S5
Fig. S8	¹⁹ F NMR of ((CF₃)₄-tpfc)Co(py) ₂	S5
Fig. S3	High-resolution APCI mass spectrum of ((CF ₃) ₂ -tpfc)Co(py) ₂	S6
Fig. S6	High-resolution APCI mass spectrum of ((CF ₃) ₃ -tpfc)Co(py) ₂	S7
Fig. S9	High-resolution APCI mass spectrum of ((CF3)4-tpfc)Co(py)2	S8
Table S1	¹ H NMR spectroscopy data of 6-coordinate CF ₃ -substituted cobalt(III)corroles	S9
Table S2	¹⁹ F NMR spectroscopy data of 6-coordinate CF ₃ -substituted cobalt(III)corroles	S9
Fig. S10:	¹ H NMR spectra of (a) ((CF ₃) ₃ -tpfc)Co(py) ₂ (5 x 10 ⁻⁵ M) (b) ((CF ₃) ₃ -tpfc)Co(py) ₂ + TFA (20 mM), (C) pyridine and TFA; were recorded at 400 MHz in C ₆ D ₆ .	S9
Fig. S11	¹⁹ F NMR spectra of (a) ((CF ₃) ₃ -tpfc)Co(py) ₂ (5 x 10 ⁻⁵ M) (b) ((CF ₃) ₃ -tpfc)Co(py) ₂ + TFA (20 mM), (C) ((CF ₃) ₃ -tpfc)Co(py) ₂ and TFA (100 mM) were recorded at 377 MHz in C ₆ D ₆ .	S10
Fig. S12	Overlapped absorption spectra of mono-pyridine, without-pyridine complexes were regenerated to bis-pyridine complexes by addition of pyridine	S10
Fig. S13	¹ H & ¹⁹ F NMR spectra were recorded for ((CF ₃) ₃ -tpfc)Co treated with pyridine which results ((CF ₃) ₃ -tpfc)Co(py) ₂ was regenerated, at 400 MHz in C ₆ D ₆ solvent.	S11
Fig. S14	¹ H NMR & ¹⁹ F NMR spectra of ((CF ₃) ₃ -tpfc)Co were recorded in acetonitrile-d3 solvent at 400 MHz., which indicates formation of diamagnetic ((CF ₃) ₃ -tpfc)Co(ACN) ₂ .	S11
Fig. S15	Overlapped absorption spectra of bis-pyridine, non-pyridine and added pyridine to non-pyridine cobalt corroles	S12

Fig. S16	ORTEP view of X-ray crystal structures of cobalt corroles.	S13
Fig. S17	Bond distances in Å units of cobalt corroles of X-ray crystal structures	S13
Table S3	X-ray structural bond length data.	S13
Table S4	X-ray structural parameters and data relevant for appreciating deviation from planarity.	S14
Fig. S18	Distance in Å between $F \oplus F$ atoms of (a) ((CF ₃) ₃ -tpfc)Co(py) ₂ and (b) ((CF ₃) ₄ -	S14
	tpfc)Co(py)2 from X-ray crystal structures.	
Table S5	X-ray crystal structural parameters of ((CF ₃) ₄ -tpfc)Co(py) ₂ , ((CF ₃) ₃ -tpfc)Co(py) ₂	S15
	and ((CF ₃) ₂ -tpfc)Co(py) ₂	
Fig. S19	Overlapped absorption spectra of bis-pyridine cobalt corroles	S16
Fig. S20	Linear plot of half-wave potentials $(E_{1/2})$ of 6-coordinated cobalt corroles.	S16
Table S6	Cartesian coordinates of (tpfc)Co and ((CF ₃) ₂ -tpfc)Co	S17
Table S7	Cartesian coordinates of ((CF ₃) ₃ -tpfc)Co and ((CF ₃) ₄ -tpfc)Co	S18

Fig. S1: ¹H NMR spectra of **((CF₃)₂-tpfc)Co(py)**₂ recorded at 400 MHz in CDCl₃ and '*'indicates solvent impurities.

Fig. S2: 19F NMR spectra of ((CF₃)₃-tpfc)Co(py)₂ recorded at 377 MHz in CDCl₃

Fig. S3: ¹H NMR spectra of **((CF₃)₃-tpfc)Co(py)**₂ recorded at 601MHz in C₆D₆ and '*'indicates solvent impurities.

Fig. S4: 19F NMR spectra of ((CF3)3-tpfc)Co(py)2 recorded at 565 MHz in C6D6

Fig. S5: ¹H NMR spectra of **((CF₃)₄-tpfc)Co(py)**₂ recorded at 601 MHz in C₆D₆ and '*'indicates solvent impurities

Fig. S6: ¹⁹F NMR spectra of **((CF₃)₄-tpfc)Co(py)**₂ recorded at 565 MHz in C₆D₆ and '*'indicates other compound impurities.

Fig. S7: High resolution APCI mass spectra of (((CF₃)₂-tpfc)Co(py)₂.

Fig. S8: High resolution APCI mass spectra of (((CF₃)₃-tpfc)Co(py)₂.

Fig. S9: High resolution APCI mass spectra of (((CF₃)₄-tpfc)Co(py)₂

	¹ H	¹ H NMR chemical shift in δ ppm, spin multiplicity, (J _{H-H} coupling constant in Hz).							
	C ₁₈ -H	C2-H	C12-H	C8-H	С ₁₃ -Н С7-Н		$para-H_{py}$	$meta extsf{-}H_{py}$	ortho-H _{py}
a((CF3)2-tpfc)(py)2	9.40 s		8.70 d. (4.8)		8.56 d. (4.8)		6.07 t	5.11 t	1.55 d
^b ((CF ₃) ₃ -tpfc)(py) ₂	9.62 s		8.49 d,(4.92)	8.46 d,(4.98)	8.33 d, (4.92)	8.35 d,(4.98)	4.70 t	4.09 t	1.75 d
^b ((CF ₃) ₄ -tpfc)(py) ₂			8.15 d, (4.9)		8.02 d, (4.9)		4.88 t	4.23 t	2.37 d

Table S1: ¹H NMR spectroscopy data of 6-coordinate CF₃-substituted cobalt(III)corroles

a = 400 MHz in CDCl₃; b = 600 MHz in C_6D_6

Table S2: 19F NMR spectroscopy data of 6-coordinate CF3-substituted cobalt(III)corroles

		^{19}F NMR chemical shift in δ ppm, spin multiplicity, (J_F-F coupling constant in Hz).										
	C ₁₈ - CF ₃	C ₂ -CF ₃	C ₁₇ - CF ₃	C ₃ -CF ₃		Ortho-F					meta-F	
a((CF ₃) ₂ -tpfc)(py) ₂			-52.7 s	5	-138.01 dd,(24.4, 8.3)		-138.39 dd,(24.4,6.8)	-153.11 t, (20.9)		-153.36 t, (20.6)	-162.31 td,(23.8, 7.5)	-163.60 td,(24.0, 7.2)
^b ((CF ₃) ₃ -tpfc)(py) ₂	-44.21 q, (10.9)		-46.17 q, (10.9)	-49.02 s	-134.94 dd,(24.1, 6.3)	-135.14 dd,(24.3, 6.9)	-135.25 dd,(25.0,8.1)	-147.20 t, (21.7)	-147.30 t, (23.2)	-147.39 t, (22.2)	-157.82 td,(24.4, 8.1)	-159.11159.36 2td
^b ((CF ₃) ₄ -tpfc)(py) ₂	-44	.60	-44.7 s	'8	-135.16 dd, (18.4)		-135.39 dd,(24.7, 7.9)	-146.54 t, (21.8)		-146.81 t, (21.4)	-157.82 td,(24.1, 7.9)	-158.88 td,(23.7, 7.0)

a = 400 MHz in CDCl₃; b = 600 MHz in C_6D_6

Fig. S10: ¹H NMR spectra of (a) **((CF₃)₃-tpfc)Co(py)**₂ (5 x 10⁻⁵ M) (b) **((CF₃)₃-tpfc)Co(py)**₂ + **TFA** (20 mM), (C) **pyridine** and **TFA**; were recorded at 400 MHz in C₆D₆. * indicates non-coordinated protonated pyridine species.

Fig. S11: ¹⁹F NMR spectra of (a) **((CF₃)₃-tpfc)Co(py)**₂ (5 x 10⁻⁵ M) (b) **((CF₃)₃-tpfc)Co(py)**₂ + **TFA** (20 mM), (C) **((CF₃)₃-tpfc)Co(py)**₂ and **TFA** (100 mM) were recorded at 377 MHz in C₆D₆.

Fig. S12: Overlapped absorption spectra of mono-pyridine, without-pyridine complexes were regenerated to bis-pyridine complexes by addition of pyridine; a) from ((CF₃)₃-tpfc)Co.py to ((CF₃)₃-tpfc)Co(py)₂; b) from ((CF₃)₃-tpfc)Co to ((CF₃)₃-tpfc)Co(py)₂.

Fig. S13: ¹H & ¹⁹F NMR spectra were recorded for ((CF₃)₃-tpfc)Co treated with pyridine which results ((CF₃)₃-tpfc)Co(py)₂ was regenerated, at 400 MHz in C₆D₆ solvent.

Fig. S14: ¹H NMR & ¹⁹F NMR spectra of **((CF₃)₃-tpfc)Co** were recorded in acetonitrile-d₃ solvent at 400 MHz., which indicates formation of diamagnetic **((CF₃)₃-tpfc)Co(CD₃CN)**₂.

Fig. S15: Overlapped absorption spectra of bis-pyridine, non-pyridine and added pyridine to non-pyridine cobalt corroles; a) (tpfc)Co(py)₂, (tpfc)Co, (tpfc)Co with pyridine; b) ((CF₃)₂-tpfc)Co(py)₂, ((CF₃)₂-tpfc)Co, ((CF₃)₂-tpfc)Co with pyridine; c) ((CF₃)₄-tpfc)Co(py)₂, ((CF₃)₄-tpfc)Co, ((CF₃)₄-tpfc)Co with pyridine; d) (Br₈-tpfc)Co(py)₂, (Br₈-tpfc)Co, (Br₈-tpfc)Co with pyridine in toluene at RT.

Fig. S16: ORTEP view of X-ray crystal structures of (a) ((CF₃)₂-tpfc)Co(py)₂, (b) ((CF₃)₃-tpfc)Co(py)₂, (c) ((CF₃)₄-tpfc)Co(py)₂.

Fig. S17: Bond distances in Å units of 6-coordinated cobalt(III) corroles, from the X-ray crystal structures.

l.

Py			Co-N b	ond dist	ance (Å)			
		а	b	С	d	(a+b+c+d)/4	е	f
	ⁱ (tpfc)Co(py) ₂	1.900	1.900	1.882	1.873	1.885	1.994	1.995
	((CF ₃) ₂ -tpfc)Co(py) ₂	1.950	1.889	1.885	1.877	1.900	2.003	2.002
	((CF ₃) ₃ -tpfc)Co(py) ₂	1.899	1.928	1.889	1.884	1.900	2.002	1.991
	((CF ₃) ₄ -tpfc)Co(py) ₂	1.898	1.884	1.881	1.882	1.886	2.011	1.978

i = X-ray data from reference 1.

 Table S4: X-ray structural parameters and data relevant for appreciating deviation from planarity.

$\widehat{\square}$		Torsion	al Angle	(degrees	5)			Mean plane	
N		Saddle			Ruffle p		ру-Со-ру	deviation (Å)	
		α	β	γ	δ	Ψ	χ	Average of 23 ring atoms	Cobalt
	ⁱ (tpfc)Co(py) ₂	2.12	28.73	1.77	20.09	5.60	7.09	1.448	0.005
	((CF ₃) ₂ -tpfc)Co(py) ₂	1.91	1.02	2.89	3.91	1.37	3.44	0.911	0.006
	((CF ₃) ₃ -tpfc)Co(py) ₂	1.65	6.65	2.81	4.60	2.11	1.68	1.222	0.018
	((CF ₃) ₄ -tpfc)Co(py) ₂	16.92	16.91	5.96	8.04	4.57	77.11	3.605	0.039

i = from reference 1

Fig. S18: Distance in Å between F...F atoms of (a) ((CF₃)₃-tpfc)Co(py)₂ and (b) ((CF₃)₄-tpfc)Co(py)₂ from X-ray crystal structures.

entry	((CF ₃) ₄ -tpfc)Co(py) ₂	((CF ₃) ₃ -tpfc)Co(py) ₂	((CF ₃) ₂ -tpfc)Co(py) ₂
CCDC number	1580471	1580472	1580473
Empirical formula	$C_{52}H_{16}Cl_2CoF_{27}N_6$	$C_{106}H_{40}Co_2F_{48}N_{12}$	C ₅₅ H ₃₀ CoF ₂₁ N ₆
Formula weight	1367.54	2561.33	1232.78
Dimensions [mm]	0.24 x 0.18 x 0.15	0.27 x 0.24 x 0.15	0.33 x 0.18 x 0.12
Crystal system	Monoclinic	Monoclinic	Monoclinic
a [Å]	17.15 (3)	32.9730 (5)	14.295 (4)
b [Å]	22.56 (11)	17.0890 (4)	15.8010 (19)
c [Å]	25.63 (5)	23.2410 (5)	26.668 (3)
V [Å ³]	9925 (6)	10638.1(4)	5105.5 (17)
F(000)	5392.0	4984.0	2472.0
Space group	C 2/c	C 2	P 21/c
Z	8	4	4
M(Mo-K _α) [mm ⁻¹]	0.9050	0.9253	0.9370
R ₁	0.0858	0.0984	0.0765
Reflections	8087	8181	7499
measured			
2θ _{max} [°]	24	24	24
Temperature (K)	200 (2)	200 (2)	200 (2)

Table S5: X-ray crystal parameters of ((CF3)4-tpfc)Co(py)2, ((CF3)3-tpfc)Co(py)2 and ((CF3)2-tpfc)Co(py)2.

Fig. S19: Overlapped absorption spectra of bis-pyridine cobalt corroles: a) (tpfc)Co(py)₂, (I₂-tpfc)Co(py)₂, ((CF₃)₂-tpfc)Co(py)₂; b) (tpfc)Co(py)₂, (I₃-tpfc)Co(py)₂, ((CF₃)₃-tpfc)Co(py)₂; c) (tpfc)Co(py)₂, (I₄-tpfc)Co(py)₂, ((CF₃)₄-tpfc)Co(py)₂ in toluene at RT.

Fig. S20: Linear plot of half-wave potentials $(E_{1/2})$ of the first electron oxidation (blue) and the second electron reduction (red) of 6-coordinate cobalt(III)corrole bis-pyridine (0.1 M TBAP, glassy carbon, Ag/AgCl, Pt wire in Acetonitrile).

(tpfc)Co, neutral, triplet	((CF ₃) ₂ -tpfc)Co, neutral, triplet
X Y Z	X Y Z
C 1.23317800 -1.60320800 -0.01820100	C -1.22948900 -2.14777800 0.00848400
C 2.52875600 -2.21287400 -0.06337600	C -2.52608400 -2.75516500 0.02962200
C 3.45881600 -1.21429800 -0.07195400	C -3.45294400 -1.75550100 0.03339700
C 2.76510500 0.03605400 -0.03219400	C -2.75686800 -0.50386500 0.01689700
N 1.38724300 -0.23232700 -0.00279800	N -1.37947900 -0.77596900 0.00230300
Н 2.71397400 -3.27492700 -0.09415400	C 3.45295600 -1.75547700 -0.03339600
Н 4.53082400 -1.32585000 -0.11162000	C 2.75687200 -0.50384600 -0.01689500
Н -4.53082400 -1.32585000 0.11162000	C 2.52610400 -2.75514700 -0.02962000
C -3.45881600 -1.21429900 0.07195400	N 1.37948500 -0.77595900 -0.00230000
C -2.76510500 0.03605400 0.03219200	C 1.22950500 -2.14776900 -0.00848100
C -2.52875600 -2.21287400 0.06337500	C 0.70278500 3.14386100 -0.00297200
N -1.38724300 -0.23232700 0.00279500	C 1.75262900 4.07378100 -0.00538700
C -1.23317800 -1.60320800 0.01820000	N 1.23803600 1.86814300 -0.00737200
Н -2.71397300 -3.27492700 0.09415400	C 2.93492900 3.34370100 -0.01110400
C -0.70246200 3.70216200 0.00813300	C 2.60225200 1.94291700 -0.01249900
C -1.78062700 4.61378100 0.00439900	C -2.93495300 3.34367700 0.01110800
N -1.21976000 2.41300800 0.02401200	C -2.60226300 1.94289700 0.01250100
C -2.94474700 3.85977900 0.01503600	C -1.75265900 4.07376700 0.00538900
C -2.57889200 2.47827300 0.02765200	N -1.23804700 1.86813300 0.00737100
C 2.94474600 3.85977900 -0.01503400	C -0.70280700 3.14385500 0.00297100
C 2.57889200 2.47827300 -0.02765500	C 0.00001500 -4.30518200 0.00000000
C 1.78062600 4.61378100 -0.00441100	C 0.28632400 -5.03320700 1.15561000
N 1.21976000 2.41300800 -0.02401600	C -0.28628800 -5.03320700 -1.15561200
C 0.70246100 3.70216200 -0.00813900	C 0.29147400 -6.42282700 1.16755200
C 0.00000000 -3.75711500 0.00000000	C -0.29142900 -6.42282600 -1.16755700
C -0.30130300 -4.48622100 -1.15123400	C 0.00002500 -7.11863200 -0.00000400
C 0.30130400 -4.48622000 1.15123400	C 4.85510000 0.78545600 -0.03028400
C -0.30668900 -5.87590400 -1.16310300	C 5.58746700 0.78023500 1.15537400
C 0.30669000 -5.87590400 1.16310300	C 5.56927700 0.79418900 -1.22695100
C 0.00000000 -6.57198700 0.00000000	C 6.97583900 0.78960000 1.15762100
C -4.83696300 1.42372100 0.04608200	C 6.95744700 0.80347400 -1.25023200
C -5.60726800 1.11364800 -1.07651800	C 7.66104000 0.80193600 -0.05158700
C -5.51908500 1.87677300 1.17696700	C -4.85510400 0.78543100 0.03028400
C -6.99120600 1.23885800 -1.07734000	C -5.58746900 0.78022500 -1.15537500

Table S6: Cartesian coordinates of (tpfc)Co and ((CF₃)₂-tpfc)Co by B3LYP/6-311G(d,p).

С	-6.90148200 2.01511600 1.19763900	С	-5.56928300 0.79415800 1.22695000
С	-7.63945700 1.69292100 0.06502500	С	-6.97584100 0.78959400 -1.15762400
С	4.83696200 1.42372200 -0.04608200	С	-6.95745200 0.80344600 1.25022900
С	5.60726600 1.11364900 1.07652000	С	-7.66104400 0.80192000 0.05158200
С	5.51908800 1.87677300 -1.17696600	С	0.00001000 - 2.81321100 0.00000100
С	6.99120400 1.23885900 1.07734400	С	-3.36328300 0.75238400 0.01897800
С	6.90148500 2.01511600 -1.19763500	С	3.36327900 0.75240800 -0.01897700
С	7.63945700 1.69292200 -0.06502000	F	-4.95030800 0.76900700 -2.33169500
С	0.00000000 - 2.26510100 - 0.00000100	F	-7.65451600 0.78777000 -2.30831400
С	3.35322700 1.30215200 -0.03451700	F	-8.99399600 0.81131300 0.06184100
С	-3.35322700 1.30215100 0.03451400	F	-7.61855800 0.81463700 2.41109800
F	5.01542100 0.68288700 2.19725100	F	-4.91414900 0.79598900 2.39356600
F	7.70053400 0.93408100 2.16801800	F	4.91414200 0.79603100 -2.39356600
F	8.96695800 1.81972500 -0.07433800	F	7.61855100 0.81467200 -2.41110200
F	7.52503200 2.44848400 -2.29729200	F	8.99399200 0.81132600 -0.06184700
F	4.83961800 2.19042400 -2.28746800	F	7.65451600 0.78776300 2.30831000
F	-4.83961400 2.19042500 2.28746700	F	4.95030700 0.76900600 2.33169400
F	-7.52502800 2.44848500 2.29729600	F	-0.57031000 -4.39160900 -2.29576400
F	-8.96695800 1.81972500 0.07434600	F	-0.56948500 -7.09210900 -2.28942300
F	-7.70053800 0.93408000 -2.16801200	F	0.57034100 - 4.39161000 2.29576300
F	-5.01542600 0.68288600 -2.19725000	F	0.56953400 - 7.09211100 2.28941600
F	0.59894500 - 3.84677000 2.28920800	F	0.00002900 - 8.45144000 - 0.00000500
F	0.59908100 - 6.54589100 2.28208500	Со	-0.00000100 0.47951700 0.00000000
F	-0.59894400 -3.84677100 -2.28920900	Н	-4.52529800 -1.86438700 0.04833700
F	-0.59908000 -6.54589200 -2.28208500	Н	-2.71284000 - 3.81710600 0.04523900
F	0.00000100 - 7.90591500 0.00000000	Н	2.71286800 -3.81708700 -0.04523700
Н	-1.70567500 5.69011800 -0.00732500	Н	4.52531200 -1.86435400 -0.04833600
Н	1.70567400 5.69011800 0.00730800	С	-4.27599500 4.00213600 0.01403200
Н	3.95509200 4.23919700 -0.00824600	С	4.27596300 4.00217700 -0.01402500
Н	-3.95509300 4.23919600 0.00825200	F	-5.02096500 3.67216300 -1.06663400
Со	0.00000000 1.02630100 -0.00000200	F	-5.00922100 3.68610900 1.10694800
		F	-4.15109500 5.34499300 0.00486200
		F	4.15104300 5.34503200 -0.00484800
		F	5.00919300 3.68616900 -1.10694300
		F	5.02093700 3.67221200 1.06664100
		Н	1.66806800 5.14809000 -0.00292500
		Н	-1.66810700 5.14807700 0.00292800
		1	

Table S7: Cartesian coordinates of ((CF₃)₃-tpfc)Co and ((CF₃)₄-tpfc)Co by B3LYP/6-311G(d,p).

((CF ₃) ₃ -tpfc)Co, neutral, triplet					pfc)Co, neutral,	triplet	
	Х	Y	Z		Х	Y	Z
С	0.95835100	2.55778900	-0.00729200	С	0.95041100	2.57968400	0.00862100
С	2.21317100	3.24942300	0.03813600	С	2.20177200	3.29306100	0.07808100
С	3.20112000	2.31505300	0.04327600	С	3.19494400	2.36238900	0.08374100
С	2.58870600	1.01690700	-0.00571700	С	2.57691600	1.05753900	0.00954700
Ν	1.19675000	1.19771700	-0.03187900	Ν	1.20034900	1.22757200	-0.02684000
С	-3.68086200	1.86220600	-0.05043400	С	-3.70965500	1.85619300	-0.05064900
С	-2.90359200	0.66064000	-0.02194300	С	-2.90648200	0.66095600	-0.01958100
С	-2.82143500	2.92026000	-0.05274500	С	-2.86124000	2.92510400	-0.05186800
Ν	-1.54650300	1.02037600	-0.00793400	Ν	-1.56886600	1.02757600	-0.00137900
С	-1.48932800	2.39777300	-0.02453600	С	-1.52144100	2.40052700	-0.01591300
С	-0.62201100	-2.86122100	0.02361700	С	-0.60763100	-2.85622400	0.00677600
С	-1.62384600	-3.84511300	0.02385600	С	-1.60380500	-3.86111800	-0.00651600
Ν	-1.23021800	-1.61659600	0.01122600	Ν	-1.21537800	-1.62717900	0.00834400
С	-2.84308000	-3.18256200	0.01260100	С	-2.82949400	-3.21291900	-0.01154700
С	-2.58916000	-1.76914700	0.00470000	С	-2.57434100	-1.78927400	-0.00277300
С	3.04837200	-2.79995400	-0.10384500	С	3.07477200	-2.78022300	-0.14223300
С	2.60468600	-1.43911800	-0.05353500	С	2.61063900	-1.41902200	-0.06571300
С	1.91312800	-3.62501800	-0.03772500	С	1.94351200	-3.61003100	-0.07240100
Ν	1.23870400	-1.46509400	-0.00166700	Ν	1.24459500	-1.45525900	-0.00989000
С	0.79165800	-2.77347600	0.00855800	С	0.81305700	-2.75604000	-0.01304100
С	-0.40459100	4.63319900	-0.00356500	С	-0.43804300	4.63737300	0.00948100

C -0.76151800 5.33037100 1.15160600	C -0.95518600 5.33419000 1.10913200
C -0.14633000 5.38851600 -1.14836000	C -0.02856600 5.41445700 -1.08173900
C -0.86184900 6.71612900 1.17324800	C -1.06779200 6.72253200 1.12615500
C -0.23574700 6.77530100 -1.15030000	C -0.11925400 6.80456000 -1.08310400
C -0.59626700 7.43979800 0.01636400	C -0.64450900 7.46142700 0.02549700
C -4.91166500 -0.75951700 -0.02406800	C -4.89627300 -0.79355800 -0.02573500
C -5.64241100 -0.79843700 1.16170700	C -5.63197700 -0.86063000 1.15989600
C -5.62286500 -0.81096100 -1.22122700	C -5.61779900 -0.83017900 -1.22146600
C -7.02755500 -0.89262300 1.16352200	C -7.02061300 -0.96132100 1.16346900
C -7.00775200 -0.90495200 -1.24481700	C -7.00622500 -0.92995000 -1.24416700
C -7.71029000 -0.94635500 -0.04607900	C -7.70902700 -0.99643300 -0.04511700
C 4.76837600 -0.08990700 0.05588100	C 4.75803300 -0.06518700 0.08533000
C 5.54596600 0.17884300 -1.06914900	C 5.54824300 0.35827300 -0.98800600
C 5.42645300 -0.20637800 1.27844900	C 5.42255100 -0.35381800 1.28020000
C 6.92463800 0.31659400 -0.98941400	C 6.92984000 0.48685400 -0.88553000
C 6.80443900 -0.07231800 1.38409400	C 6.80479500 -0.23904200 1.40591500
C 7.55426200 0.18919700 0.24382200	C 7.56061400 0.18333300 0.31775300
C -0.30670900 3.14492500 -0.01394700	C -0.33065300 3.15117100 -0.00067200
C 3.28095100 -0.18890100 -0.02365900	C 3.27232600 -0.16046200 -0.01801800
C -3.42491800 -0.63080600 -0.01243900	C -3.40908100 -0.65146200 -0.01468300
F 4.96277500 0.30505200 -2.26650300	F 4.98074500 0.65239900 -2.16547300
F 7.64827200 0.56759200 -2.08389100	F 7.65966600 0.89393800 -1.93657600
F 8.87757900 0.31958700 0.33228200	F 8.89147800 0.30259400 0.42772900
F 7.41078400 -0.18983400 2.56814700	F 7.41093900 -0.52280600 2.56901000
F 4.72415400 -0.45219400 2.39062700	F 4.72993700 -0.74881100 2.35555600
F -4.96736800 -0.77126300 -2.38687500	F -4.97711700 -0.76538400 -2.39518700
F -7.66643100 -0.95582000 -2.40553400	F -7.67101700 -0.96147800 -2.40990500
F -9.03975000 -1.03686200 -0.05671300	F -9.04618500 -1.09109500 -0.05453000
F -7.70507100 -0.93199400 2.31371700	F -7.69908600 -1.02284000 2.31998700
F -5.00622700 -0.74715100 2.33730500	F -5.00554600 -0.82566900 2.34226000
F 0.20223900 4.77680400 -2.28694300	F 0.46897900 4.82650200 -2.17819900
F 0.01705600 7.47112800 -2.26144200	F 0.28233200 7.51376700 -2.14915200
F -1.02225700 4.66070300 2.28114100	F -1.36089800 4.66776800 2.19863500
F -1.20624300 7.35516600 2.29387400	F -1.56631000 7.35389900 2.20027800
F -0.68718100 8.76899200 0.02594500	F -0.74199000 8.79822000 0.03336000
$\begin{array}{ccc} \text{Co} & -0.08917100 & -0.15025800 & -0.00670200 \\ \end{array}$	Co -0.08868900 -0.14440500 -0.00307500
H 4.26295100 2.49465900 0.07834300	H 4.25775700 2.54634900 0.14046100
H 2.32870000 4.32100200 0.07087300	H 2.30944200 4.36687900 0.13141400
H -3.07590900 3.96770200 -0.07822500	H -3.12484600 3.97234200 -0.08427900
H = -4.75795100 = 1.89915900 = 0.06848600	H -4.78982600 1.87953200 -0.07316500
C = 4.46577600 - 3.26903800 - 0.27436500	C 4.47985000 -3.24691300 -0.32692100
C = 1.86431300 - 5.12625000 - 0.00637600	C 1.90866800 -5.10260900 -0.05513800
L = -4.14426200 - 3.91946700 - 0.00940600	L -4.11982100 -3.94684900 -0.02521000
F = 5.0/408900 - 2.62/34400 - 1.29948900	F 5.1406/400 -2.51598400 -1.26486500
F = 5.21568100 - 3.05314200 - 0.83088700	F = 5.22568900 - 3.17072000 - 0.81025400 $F = 4.55502200 - 4.52070000 - 0.74107000$
F = 4.54542200 - 4.57796500 - 0.54849500	F = 4.55503300 - 4.52870000 - 0.74197000
F = 2.67790000 - 5.63226900 - 0.94975200	F = 2.79682200 - 5.63217000 - 0.81950900
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F 0.09020000 -3.30399800 0.32394800 F 2.16443300 5 66070000 1.36203500
F _2 0/128600 _5 25002200 0.02112200	F _2 02722200 _5.000/9000 -1.20502500
F _4.89229900 _3.64720400 _1.08524600	$\mathbf{F} = -4.88846000 - 3.66464400 - 1.11414000$
F _4 90772700 _3 63029500 1.06334000	F = -4.90058800 -3.00404400 -1.11414900
H = -1.48363400 - 4.90979400 - 0.02924000	H = -1.44734100 - 4.92583200 - 0.01686900

References

1. Mahammed, A.; Giladi, I.; Goldberg, I.; Gross, Z. Chem. Eur. J. 2001, 7, 4259.