Supporting Information

Unusual Formation of NiCo₂O₄@MnO₂/Nickel Foam/MnO₂ Sandwich as Advanced Electrodes for Hybrid Supercapacitors

Chunli Guo,¹ Jie Li,¹ haibo Li,² huaiping Zhang,¹ Lifeng Hou,¹ Yinghui Wei,¹ Jing Liu,³ Yanting Chu,¹ and Shenglin Xiong^{4*}

¹College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China

²School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China

³College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

⁴Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, PR China

*Correspondence and requests for materials should be addressed to S.L.X. (email: chexsl@sdu.edu.cn).

Fig. S1 FESEM images of the as-synthesized cobalt-nickel hydroxide precursor nanowire arrays grown on NF.

Fig. S2 (a, b) The different distributions of cobalt-nickel hydroxide precursors on NF.

Fig. S3 EDX spectrum of the $NiCo_2O_4@MnO_2/NF/MnO_2$ sandwiches.

Fig. S4 XRD patterns of the $NiCo_2O_4$ @MnO₂/NF/MnO₂ sandwiches.

Fig. S5 The corresponding EDX mapping image showing the distribution of Mn, Co, and Ni for $NiCo_2O_4@MnO_2$ core-shell structures.

Fig. S6 XPS spectrum of survey for the as-fabricated $NiCo_2O_4@MnO_2/NF/MnO_2$ sandwiches.

Fig. S7 FESEM images of the side A (A) and side B (B) of $NiCo_2O_4@MnO_2/NF/MnO_2$ sandwiches after 30,000 cycles.

Fig. S8 the GCD curves of HSC at 0.1 A g^{-1} (A), 1.5 A g^{-1} (B) and 2.5 A g^{-1} (C).

Table S1. Electrochemical performance of the $NiCo_2O_4@MnO_2/NF/MnO_2$ sandwich electrode in this study, compared with some other $NiCo_2O_4$ -based electrodes reported in previous literature.

Electrode materials	Specific capacity	Electrolyte	Cycling stability	Refs.
NiCo ₂ O ₄ nanosheets	404.6 C g ⁻¹ at 1 A g ⁻¹	6 M KOH	93.2% after 6000 cycles	[48]
3D network-like mesoporous $NiCo_2O_4$	465.5 C g⁻¹ at 3 A g⁻¹	2 M KOH	125.2% after 1000 cycles	[49]
NiCo ₂ O ₄ -decorated porous carbon nanosheets	238.7 C g ⁻¹ at 2 A g ⁻¹	6 M KOH	98.0% after 3000 cycles	[50]
$NiCo_2O_4@MnO_2$ core-shell nanosheets	1.08 C cm ⁻² at 3 mA cm ⁻²	1 M NaOH	92.6% after 2000 cycles	[27]
NiCo ₂ O ₄ /MnO ₂ heterostructured nanosheet	0.44 C cm ⁻² at 2 mA cm ⁻²	2 M KOH	110.0% after 6000 cycles	[51]
$NiCo_2O_4@MnO_2$ core-shell nanowire	1.01 C cm ⁻² at 2 mA cm ⁻²	1 M NaOH	113.6% after 8000 cycles	[23]
NiCo ₂ O ₄ @MnO ₂ /NF/MnO ₂	1.70 C cm ⁻² at 2 mA cm ⁻²	6 M KOH	90.0% after 30,000 cycles	Our work

Current density	Discharge time	Specific capacity	Energy density	Power density
(A g ⁻¹)	(s)	(C g⁻¹)	(Wh kg⁻¹)	(W kg⁻¹)
0.1	2407.0	240.6	53.5	80.0
0.5	322.5	161.3	35.8	400.0
1.0	149.2	149.3	33.2	801.1
1.5	89.0	133.4	29.7	1201.3
2.0	64.6	129.3	28.7	1599.4
2.5	50.0	125.0	27.8	2001.6
3.0	40.4	121.3	27.0	2405.9
5.0	22.0	110.1	24.5	4009.1
10.0	9.3	93.0	20.7	8012.9

Table S2. the discharge time, specific capacity, energy densities and power densities of the HSC at various current densities.