Supporting Information

Mössbauer and mass spectrometry support for iron(II) catalysts in enantioselective C–H activation

Joachim Loup,^[a] Tobias Parchomyk,^[a] Stefan Lülf,^[a] Serhiy Demeshko,^[b] Franc Meyer,^[b] Konrad Koszinowski,^{*[a]} and Lutz Ackermann^{*[a]}

^[a] Institut für Organische und Biomolekulare Chemie, Georg-August-Universität

Tammannstraße 2, D-37077 Göttingen, Germany

Phone (Fax): +49 551 3933202 (3966777)

^[b] Institut für Anorganische Chemie, Georg-August-Universität

Tammannstraße 4, D-37077 Göttingen, Germany.

* E-Mail: Konrad.Koszinowski@chemie.uni-goettingen.de; Lutz.Ackermann@chemie.unigoettingen.de

Table of Contents

General Remarks	S-3
Sample Preparation	S-3
Mössbauer Parameters	S-4
Additional Spectra	S-6
References	S-17

General Remarks

In all cases, standard Schlenk techniques were applied. THF was obtained from a MBRAUN MB SPS-800 solvent purification system, or dried over sodium/benzophenone and freshly distilled before use. TMEDA was dried first over calcium hydride, then over sodium, and finally distilled. **L** and **1a** were synthesized as previously reported.^[1] Grignard reagents were used as purchased: CyMgCl (1.0 M in THF) and PhMgCl (1.9 M in THF). ⁵⁷FeCl₂ was synthesized from ⁵⁷Fe-enriched metal powder (95%, Isoflex) according to the literature.^[2] Sample solutions were injected into the ESI source of an HCT quadrupole-ion trap mass spectrometer (Bruker Daltonics) at a flow-rate of 8.0 μ L min⁻¹ and transferred into the helium-filled ion trap under mild conditions.^[3] Mass spectra were recorded over an *m*/*z* range of 50–1200. Mössbauer spectra were recorded with a ⁵⁷Co source in a Rh matrix using an alternating constant acceleration *Wissel* Mössbauer spectrometer operated in the transmission mode and equipped with a *Janis* closed-cycle helium cryostat. Isomer shifts are given relative to iron metal at ambient temperature. Simulation of the experimental data was performed with the *Mfit* program using *Lorentzian* line doublets.^[4]

Sample Preparation

ESI-MS

Standard sample solutions were prepared by the addition of the Grignard reagent (8.0 equiv) to a solution of Fe(acac)₃ (1.0 equiv), TMEDA (4.0 equiv) in THF at -78 °C, and dilution to 10 mM. L and **1a** were added before the Grignard reagent.

Mössbauer Spectroscopy

Mössbauer sample solutions were prepared by the addition of the Grignard reagent (8.0 equiv) to solutions of 57 FeCl₂ (5.0 mM, 1.0 equiv) and TMEDA (4.0 equiv) in THF in a N₂-filled glovebox (unless specified otherwise: at -20 °C for CyMgCl, and at 23 °C for PhMgCl) and directly transferred into the Mössbauer sample cell before *immediately* freezing in liquid nitrogen (outside of the glovebox). L and **1a** were added before the Grignard reagent.

Mössbauer Parameters

Reaction	Figure	δ [mm s ⁻¹]	Δ <i>E</i> _Q [mm s ^{−1}]	Rel. int. [%]	Color	Assignment
⁵⁷ FeCl ₂ (5.0 mM) +	Fig. 1b	0.48	0.89	84	blue	Cy₄Fe(III) [−]
TMEDA (4.0 equiv) +		0.21	1.56	16	red	Cy₃Fe(II) ⁻
⁵⁷ FeCl ₂ (5.0 mM) +	Fig. S2	0.48	0.88	85	blue	Cy₄Fe(III) [−]
TMEDA (4.0 equiv) +		0.24	1.59	15	red	Cy₃Fe(II) [−]
CynigCi (8.0 equiv).						
⁵⁷ FeCl ₂ (5.0 mM) + TMEDA (4.0 equiv) + CyMgCl (8.0 equiv) ^[b]	Fig. S3	0.19	0.86	68	gray	
		0.48	0.91	28	blue	Cy₄Fe(III) [−]
		-0.10	1.10	3		
⁵⁷ FeCl ₂ (5.0 mM) + TMEDA (4.0 equiv) + L (1.0 equiv) + CyMgCl (8.0 equiv)	Fig. 2b	0.18	1.59	36	red	Cy₃Fe(II) ⁻
		0.39	3.19	27	green	Cy ₂ Fe(II)(NHC)
		0.46	0.98	19	blue	Cy₄Fe(III) [−]
		0.54	2.04	11	magenta	Cy₃Fe(II)(NHC) ⁻
		0.24	0.40	7	cyan	
⁵⁷ FeCl ₂ (5.0 mM) + TMEDA (4.0 equiv) + L (1.0 equiv) + CyMgCl (8.0 equiv) ^[b]	Fig. S10	0.22	1.57	47	red	Cy₃Fe(II) ⁻
		0.22	0.57	34	cyan	
		0.75	1.57	10	purple	
		0.37	3.20	9	green	Cy ₂ Fe(II)(NHC)
⁵⁷ FeCl ₂ (5.0 mM) + TMEDA (4.0 equiv) + L (1.0 equiv) + 1a (1.0 equiv) + CyMgCl (8.0 equiv)	Fig. S13	0.20	1.71	53	red	Cy₃Fe(II) ⁻
		0.43	3.13	21	green	Cy ₂ Fe(II)(NHC)
		0.58	2.04	18	magenta	Cy₃Fe(II)(NHC) ⁻
		0.47	0.84	8	blue	Cy₄Fe(III) [−]

Table S1. Reactions with CyMgCI

[a] Recorded at 7 K. [b] Prepared at 23 °C. NHC = $C_{49}H_{54}N_2$.

Reaction	Figure	δ [mm s ⁻¹]	Δ <i>E</i> _Q [mm s ^{−1}]	Rel. int. [%]	Color	Assignment
⁵⁷ FeCl ₂ (5.0 mM) + TMEDA (4.0 equiv) + PhMgCl (8.0 equiv)	Fig. S4	0.54	1.12	78	blue	Ph₄Fe(III) [−]
		0.20	1.44	13	red	Ph₃Fe(II) ⁻
		0.46	2.61	9	dark yellow	
⁵⁷ FeCl₂ (5.0 mM) + TMEDA (4.0 equiv) + L (1.0 equiv) + PhMgCl (8.0 equiv)	Fig. S9	0.51	1.09	40	blue	Ph₄Fe(III) [−]
		0.22	4.25	39	green	Ph ₂ Fe(II)(NHC)
		0.56	2.62	14	light green	
		0.32	1.70	4	orange	
		1.10	4.30	3	wine	
⁵⁷ FeCl ₂ (5.0 mM) + TMEDA (4.0 equiv) + L (1.0 equiv) + 1a (1.0 equiv) + PhMgCl (8.0 equiv)		0.51	1.09	52	blue	Ph₄Fe(III) [¯]
	Fig. S14	0.22	4.21	36	green	Ph ₂ Fe(II)(NHC)
		0.57	2.64	7	light green	
		0.32	1.70	4	orange	
		1.10	4.30	2	wine	

Table S2. Reactions with PhMgCl

Additional Spectra

Fig. S1. Negative-ion mode ESI spectrum of a solution of the products formed in the reaction of Fe(acac)₃ (10 mM) with TMEDA (4.0 equiv) and PhMgCI (8.0 equiv) in THF; $a = [Ph, Fe, O_2]^{-}$.

Fig. S2. Mössbauer spectrum and components of the fit of a frozen solution ($\underline{T} = 7 \text{ K}$) of the products formed in the reaction of ⁵⁷FeCl₂ (5.0 mM), TMEDA (4.0 equiv) and CyMgCl (8.0 equiv) in THF; components of the fit: δ (blue) = 0.48 mm s⁻¹, ΔE_Q (blue) = 0.88 mm s⁻¹, rel. int. = 85%; δ (red) = 0.24 mm s⁻¹, ΔE_Q (red) = 1.59 mm s⁻¹, rel. int. = 15%.

Fig. S3. Mössbauer spectrum and components of the fit of a frozen solution (T = 80 K) of the products formed in the reaction of 57 FeCl₂ (5.0 mM), TMEDA (4.0 equiv) and CyMgCl (8.0 equiv) in THF <u>at 23 °C</u>; components of the fit: δ (gray) = 0.19 mm s⁻¹, ΔE_Q (gray) = 0.86 mm s⁻¹, rel. int. = 68%; δ (blue) = 0.48 mm s⁻¹, ΔE_Q (blue) = 0.91 mm s⁻¹, rel. int. = 28%; δ (yellow) = -0.10 mm s⁻¹, ΔE_Q (yellow) = 1.10 mm s⁻¹, rel. int. = 3%.

Fig. S4. Mössbauer spectrum and components of the fit of a frozen solution (T = 80 K) of the products formed in the reaction of 57 FeCl₂ (5.0 mM), TMEDA (4.0 equiv) and PhMgCl (8.0 equiv) in THF; components of the fit: δ (blue) = 0.54 mm s⁻¹, ΔE_Q (blue) = 1.12 mm s⁻¹, rel. int. = 78%; δ (red) = 0.20 mm s⁻¹, ΔE_Q (red) = 1.44 mm s⁻¹, rel. int. = 13%; δ (dark yellow) = 0.46 mm s⁻¹, ΔE_Q (dark yellow) = 2.61 mm s⁻¹, rel. int. = 9%.

Fig. S5. Comparison of the observed (black) and simulated (red) isotope pattern of $Cy_2FeH(NHC)^-$; NHC = $C_{49}H_{54}N_2$.

Fig. S6. Comparison of the observed (black) and simulated (red) isotope pattern of $Cy_3Fe(NHC)^-$; NHC = $C_{49}H_{54}N_2$.

Fig. S7. Negative-ion mode ESI spectrum of a solution of the products formed in the reaction of $Fe(acac)_3$ (10 mM) with TMEDA (4.0 equiv), PhMgCI (8.0 equiv) and L (1.0 equiv) in THF; $a = [Ph, Fe, O_2]^-$.

Fig. S8. Positive-ion mode ESI spectrum representative of all experiments; $a = Mg_3Cl_3(OMe)(OH)(TMEDA)^{2+}$, $b = Mg_3Cl_3(OMe)_2(THF)_2(TMEDA)^+$, $c = Mg_3Cl_3(OMe)_2(THF)_3(TMEDA)^+$. The incorporated methoxide originates from traces of methanol as reported previously.^[5]

Fig. S9. Mössbauer spectrum and components of the fit of a frozen solution (*T* = 80 K) of the products formed in the reaction of ⁵⁷FeCl₂ (5.0 mM), TMEDA (4.0 equiv), PhMgCl (8.0 equiv) and **L** (1.0 equiv) in THF; components of the fit: δ (blue) = 0.51 mm s⁻¹, ΔE_Q (blue) = 1.09 mm s⁻¹, rel. int. = 40%; δ (green) = 0.22 mm s⁻¹, ΔE_Q (green) = 4.25 mm s⁻¹, rel. int. = 39%; δ (light green) = 0.56 mm s⁻¹, ΔE_Q (light green) = 2.62 mm s⁻¹, rel. int. = 14%; δ (orange) = 0.32 mm s⁻¹, ΔE_Q (wine) = 1.70 mm s⁻¹, rel. int. = 4%; δ (wine) = 1.10 mm s⁻¹, ΔE_Q (wine) = 4.30 mm s⁻¹, rel. int. = 3%.

Fig. S10. Mössbauer spectrum and components of the fit of a frozen solution (T = 80 K) of the products formed in the reaction of 57 FeCl₂ (5.0 mM), TMEDA (4.0 equiv), CyMgCl (8.0 equiv) and L (1.0 equiv) in THF at <u>23 °C</u>; components of the fit: δ (red) = 0.22 mm s⁻¹, ΔE_Q (red) = 1.57 mm s⁻¹, rel. int. = 47%; δ (cyan) = 0.22 mm s⁻¹, ΔE_Q (cyan) = 0.57 mm s⁻¹, rel. int. = 34%; δ (purple) = 0.75 mm s⁻¹, ΔE_Q (purple) = 1.57 mm s⁻¹, rel. int. = 10%; δ (green) = 0.37 mm s⁻¹, ΔE_Q (green) = 3.20 mm s⁻¹, rel. int. = 9%.

Fig. S11. Negative-ion mode ESI spectrum of a solution of the products formed in the reaction of $Fe(acac)_3$ (10 mM) with TMEDA (4.0 equiv), CyMgCI (8.0 equiv), L (1.0 equiv) and **1a** (1.0 equiv) in THF.

Fig. S12. Negative-ion mode ESI spectrum of a solution of the products formed in the reaction of $Fe(acac)_3$ (10 mM) with TMEDA (4.0 equiv), PhMgCl (8.0 equiv), L (1.0 equiv) and **1a** (1.0 equiv) in THF.

Fig. S13. Mössbauer spectrum and components of the fit of a frozen solution (*T* = 80 K) of the products formed in the reaction of ⁵⁷FeCl₂ (5.0 mM), TMEDA (4.0 equiv), CyMgCl (8.0 equiv), **L** (1.0 equiv) and **1a** (1.0 equiv) in THF; components of the fit: δ (red) = 0.20 mm s⁻¹, ΔE_Q (red) = 1.71 mm s⁻¹, rel. int. = 53%; δ (green) = 0.43 mm s⁻¹, ΔE_Q (green) = 3.13 mm s⁻¹, rel. int. = 21%; δ (magenta) = 0.58 mm s⁻¹, ΔE_Q (magenta) = 2.04 mm s⁻¹, rel. int. = 18%; δ (blue) = 0.47 mm s⁻¹, ΔE_Q (blue) = 0.84 mm s⁻¹, rel. int. = 8%.

Fig. S14. Mössbauer spectrum and components of the fit of a frozen solution (*T* = 80 K) of the products formed in the reaction of ⁵⁷FeCl₂ (5.0 mM), TMEDA (4.0 equiv), PhMgCl (8.0 equiv), **L** (1.0 equiv) and **1a** (1.0 equiv) in THF; components of the fit: δ (blue) = 0.51 mm s⁻¹, ΔE_Q (blue) = 1.09 mm s⁻¹, rel. int. = 52%; δ (green) = 0.22 mm s⁻¹, ΔE_Q (green) = 4.21 mm s⁻¹, rel. int. = 36%; δ (light green) = 0.57 mm s⁻¹, ΔE_Q (light green) = 2.64 mm s⁻¹, rel. int. = 7%; δ (orange) = 0.32 mm s⁻¹, ΔE_Q (orange) = 1.70 mm s⁻¹, rel. int. = 4%; δ (wine) = 1.10 mm s⁻¹, ΔE_Q (wine) = 4.30 mm s⁻¹, rel. int. = 2%.

References

- 1. J. Loup, D. Zell, J. C. A. Oliveira, H. Keil, D. Stalke, L. Ackermann, *Angew. Chem. Int. Ed.* **2017**, *56*, 14197–14201.
- 2. G. Winter, D. W. Thompson, J. R. Loehe, *Inorg. Synth.* 2007, 14, 99–104.
- 3. K. Koszinowski, J. Am. Chem. Soc. 2010, 132, 6032–6040.
- 4. E. Bill, *Mfit Program*; Max-Planck Institute for Chemical Energy Conversion: Mülheim/Ruhr, Germany, 2008.
- a) T. Parchomyk, S. Demeshko, F. Meyer, K. Koszinowski, *J. Am. Chem. Soc.* 2018, 140, 9709–9720; b) S. B. Muñoz III, S. L. Daifuku, J. D. Sears, T. M. Baker, S. H. Carpenter, W. W. Brennessel, M. L. Neidig, *Angew. Chem. Int. Ed.* 2018, 57, 6496–6500; c) C. Schnegelsberg, T. D. Blümke, K. Koszinowski, *J. Mass Spectrom.* 2015, *50*, 1393–1395.