Supporting Information

Strongly luminescent 5d/4f heterometal-organic macrocycles with

open metal sites: post-assembly modification and sensing

Qiang-Yu Zhu,^{a,b} Li-Peng Zhou^a and Qing-Fu Sun^{*a}

 ^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.
 ^b University of Chinese Academy of Sciences, Beijing 100049, PR China.

1. General	3
2. Synthesis and characterization	3
2.1 Synthetic procedures	3
2.2 NMR spectra	6
2.3 ¹ H DOSY spectra1	7
3. Photophysical property1	9
3.1 UV-Vis absorption and Fluorescence Spectra1	9
3.2 Lifetime measurement	2
3.3 Quantum yield2	4
3.3 Number of coordinated solvent molecules2	7
4. Organophosphorus sensing	0
4.1 Fluorescent titration	0
4.2 UV-Vis titration	9
4.3 Lifetime measurement	2
4.4 Limit of detection (LOD)4	3
5. Mass spectra	6
6. Single crystal X-ray diffraction studies	4
7. References	9

1. General

Unless otherwise stated, all chemicals and solvents were purchased from commercial companies and used without further purification. Anhydrous solvents were distilled according to standard procedures. Deuterated solvents were purchased from Admas, J&K scientific and Sigma-Aldrich. 1D and 2D-NMR spectra were measured on a Bruker Biospin Avance III (400 MHz) spectrometer. ¹H-NMR chemical shifts were determined with respect to residual signals of the deuterated solvents used. Electro-spray-ionization time-of-flight mass-spectroscopy (ESI-TOF-MS) were recorded on an Impact II UHR-TOF mass spectrometry from Bruker, with tuning mix as the internal standard. Data analysis was conducted with the Bruker Data Analysis software (Version 4.3) and simulations were performed with the Bruker Isotope Pattern software. UV-Vis spectra are recorded on UV-2700 UV-Visible spectrophotometer from SHIMADZU. Excitation and emission spectra were recorded on the FS5 spectrofluorometer from Edinburg Photonics. All spectra were corrected for the experimental functions.

2. Synthesis and characterization

2.1 Synthetic procedures

Scheme S1. Synthetic route of organic ligand.

The preparation of compound **3** and **6** were followed the literature procedure.^[1] Ligand bis(2-(diphenylphosphino)phenyl) ether oxide (**DPEPO**) was purchased from Bide Pharmatech Ltd.

3 ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s), 3.54 (q, *J* = 7.1 Hz), 3.32 (q, *J* = 7.1 Hz), 1.24 (t, *J* = 7.1 Hz), 1.15 (t, *J* = 7.1 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 166.82, 154.59, 134.68, 127.24, 43.40, 40.39, 14.36, 12.84.

Synthesis of 4-(Trimethylsilylethynyl)-2,6-bis(diethylcarbamoyl)-pyridine(4):

3 (1068 mg, 3.0 mmol, 1.0 equiv), CuI (57 mg, 0.3 mmol, 0.1 equiv) and Pd(PPh₃)₄ (277 mg, 0.24 mmol, 0.08 equiv) were added into a three-necked flask, and the reaction mixture was stirred in anhydrous TEA/THF (60 mL, v/v = 1:5) at room temperature under nitrogen atmosphere. Then trimethylsilylacetylene (884 mg, 9 mmol, 3 equiv, TMSA) was added dropwise into the mixture and the suspension was stirred for 24 h. The residue was filtered off with kieselguhr, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on a silica gel column (DCM) to afford **4** as a white solid.(787.8 mg, 70.3%), m.p.>250°C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 2H), 3.54 (q, *J* = 7.1 Hz, 4H), 3.31 (q, *J* = 7.1 Hz, 4H), 1.24 (t, *J* = 7.1 Hz, 6H), 1.13 (t, *J* = 7.1 Hz, 6H), 0.25 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.65, 153.87, 133.63, 102.09, 101.22, 43.37, 40.30, 14.38, 12.88, -0.28.

Synthesis of 4-Ethynyl-2,6-bis(diethylcarbamoyl)pyridine(5):

KF (348 mg, 6.0 mmol, 3.0 equiv) was added to a solution of 4 (747 mg, 2.0 mmol, 1.0 equiv) in MeOH (60 mL). The solution was further stirred for 6 h at room temperature. The organic solvent was removed under reduced pressure, and the crude product was purified by chromatography on a silica gel column (v/v, DCM/MeOH=100:1) to afford **5** as a light yellow solid.(577 mg, 95.8%), m.p.>250 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 2H), 3.54 (q, *J* = 7.1 Hz, 4H), 3.37 (s, 1H), 3.31 (q, *J* = 7.0 Hz, 4H), 1.24 (t, *J* = 7.1 Hz, 6H), 1.13 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.47, 153.93, 132.74, 126.14, 83.54, 80.23, 43.38, 40.30, 14.35, 12.86.

Synthesis of Pt-L:

Under a nitrogen atmosphere, **6** (160.3 mg, 0.3 mmol, 1.0 equiv), **5** (266 mg, 0.75 mmol, 2.5 equiv), CuI (3.4 mg, 0.03 mmol, 0.1 equiv) and a mixture solvent of DCM/TEA (60 ml, v/v=4:1) were added into a 100 mL Schlenk flask. The mixture were stiring for 24h at ambient temperature. After the reaction, The solvents were removed in vacuo and the crude material was purified by chromatography on a silica gel column (v/v,CH₂Cl₂/CH₃OH =60:1) to give ligand as yellow powder (255mg,0.24mmol, 80.1%), m.p.>250 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.51 (d, *J* = 5.9 Hz, 2H), 7.97 (s, 2H), 7.66 (d, *J* = 6.0 Hz, 2H), 7.58 (s, 4H), 3.54 (q, *J* = 7.1 Hz, 8H), 3.33 (q, *J* = 6.9 Hz, 8H), 1.46 (s, 9H), 1.24 (t, *J* = 7.0 Hz, 12H), 1.13 (t, *J* = 7.0 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 168.48, 164.31, 156.15, 153.44, 151.06, 138.10, 125.80, 125.05, 119.16, 99.60, 97.47, 43.22, 39.95, 35.97, 30.28, 14.33, 12.88. HR-MS (ESI) calcd. For C₅₂H₆₈N₈O₄Pt [Pt-L+H]¹⁺:1064.5088, found 1064.5085.

Synthesis of La₂(Pt-L)₂(ClO₄)₆

Ligand **Pt-L** (31.9mg, 30µmol, 1.0 equiv) was treated with La(ClO₄)₃ 6H₂O (16.4mg, 30µmol, 1.0 equiv) in 5mL MeCN, the turbid suspension changed to homogeneous green solution immediately. The mixture was further stirred for 2h at 40°C. ¹H NMR showed the quantitative formation of La₂(**Pt-L**)₂(ClO₄)₆. The solvent was removed under reduced pressure to give the isolated product (45.3mg, 14.07µmol, 93.7% yield), m.p.>250°C. ¹H NMR (400 MHz, CD₃CN) δ 9.38 (d, *J* = 6.0 Hz, 2H), 8.38 (s, 2H), 7.79 (s, 6H), 3.75 (q, *J* = 7.0 Hz, 8H), 3.56 (d, *J* = 6.6 Hz, 8H), 1.47 (s, 18H), 1.41 (t, *J* = 7.1 Hz, 12H), 1.23 (t, *J* = 7.0 Hz, 12H). ¹³C NMR (100 MHz, CD₃CN) δ 170.30,

166.61, 157.27, 151.31, 150.72, 141.00, 128.90, 125.89, 122.14, 108.35, 100.60, 45.47, 43.15, 36.80, 30.18, 14.09, 12.35.

Synthesis of Eu₂(Pt-L)₂(OTf)₆

The complexe of Eu₂(Pt-L)₂(OTf)₆ was prepared by the same procedure. ligand **Pt-L**(31.9mg, 30µmol, 1.0 equiv) was treated with Eu(OTf)₃(18.0mg, 30µmol, 1.0 equiv) in 5mL MeCN, the turbid suspension changed to clear light orange solution immediately. The mixture was further stirred for 2h at 40°C. ¹H NMR showed the quantitative formation of Eu₂(**Pt-L**)₂(OTf)₆. The solvent was removed under reduced pressure to give the isolated product (45.9mg, 13.80µmol, 92.0% yield), m.p.>250°C. ¹H NMR (400 MHz, CD₃CN) δ 8.32 (d, *J* = 6.1 Hz, 2H), 7.95 (s, 2H), 6.88 (d, *J* = 5.4 Hz, 2H), 1.06 (s, 18H). ¹³C NMR (100 MHz, CD₃CN) δ 166.20, 156.83, 151.17, 150.42, 124.94, 121.77, 114.04, 110.86, 109.27, 94.84, 36.41, 29.81(The signals of pcam are not detectable, probably due to the paramagnetic property of Eu^{III}). ESI-TOF-MS for Eu₂(Pt-L)₂(OTf)₆.: The following picked signals are those at the highest intensities. *m*/*z* Calcd for [Eu₂(Pt-L)₂(OTf)₄]²⁺ 1514.3264, found 1514.3241; Calcd for [Eu₂(Pt-L)₂(OTf)₃]³⁺ 959.9001, found 959.8984; Calcd for [Eu₂(Pt-L)₂(OTf)₂]⁴⁺ 682.6870, found 682.6859; Calcd for [Eu₂(Pt-L)₂(OTf)]⁵⁺ 516.1589, found 516.1588.

Synthesis of Lu₂(Pt-L)₂(OTf)₆

ligand **Pt-L**(31.9mg, 30µmol, 1.0 equiv) was treated with Lu(OTf)₃(18.67mg, 30µmol, 1.0 equiv) in 5mL MeCN, the turbid suspension changed to clear light red solution immediately. The mixture was further stirred for 2h at 40 °C . ¹H NMR showed the quantitative formation of Lu₂(**Pt-L**)₂(OTf)₆. The solvent was removed under reduced pressure to give the isolated product (46.1mg, 13.67µmol, 91.2% yield), m.p.>250 °C. ¹H NMR (400 MHz, CD₃CN) δ 9.43 (d, *J* = 5.8 Hz, 2H), 8.41 (s, 2H), 7.98 (s, 2H), 7.76 (d, *J* = 6.0 Hz, 2H), 7.71 (s, 2H), 3.74 (s, 8H), 3.12 (s, 8H), 1.48 (s, 18H), 1.26 (s, 12H), 0.99 (s, 12H). ¹³C NMR (100 MHz, CD₃CN) δ 170.09, 166.73, 157.35, 151.41, 149.66, 141.88, 129.78, 125.78, 123.08, 122.27, 119.90, 109.38, 100.61, 45.67, 44.19, 36.85, 30.19, 13.93, 12.11. ESI-TOF-MS for Lu₂(**Pt-L**)₂(OTf)₆.: The following picked signals are those at the highest intensities. *m/z* Calcd for [Lu₂(Pt-L)₂(OTf)₄]²⁺ 1536.8461, found 1536.8428; Calcd for [Lu₂(Pt-L)₂(OTf)₃]³⁺ 974.9133, found 974.9128; Calcd for [Lu₂(Pt-L)₂(OTf)₂]⁴⁺ 693.9468, found 693.9467; Calcd for Lu₂(Pt-L)₂(OTf)]⁵⁺ 525.3670, found 525.3668.

Synthesis of Lu₂(Pt-L)₂(DPEPO)₂(OTf)₆

ligand Pt-L(31.9mg, 30µmol, 1.0 equiv) was treated with Lu(OTf)₃(18.67mg, 30µmol, 1.0 equiv) and DPEPO(17.11mg, 30µmol, 1.0 equiv)in 5mL MeCN, the turbid suspension changed to clear light green solution within minites. The mixture was further stirred for 2h at 40°C. ¹H NMR showed the quantitative formation of $Lu_2(Pt-L)_2(DPEPO)_2(OTf)_6$. The solvent was removed under reduced pressure to give the isolated product (62.3mg, 13.81µmol, 92.1% yield), m.p.>250°C. ESI-TOF-MS for Lu₂(Pt-L)₂(DPEPO)₂(OTf)₆: The following picked signals are those at the highest intensities. m/z Calcd for $[Lu_2(Pt-L)_2(DPEPO)_2(OTf)_3]^{3+}$ 1355.3484, found 1355.3496; $[Lu_2(Pt-L)_2(DPEPO)_2(OTf)_2]^{4+}$ Calcd for 979.2732, found 979.2735; Calcd for [Lu₂(Pt-L)₂(DPEPO)₂(OTf)]⁵⁺ 753.6281, found 753.6285; Calcd for [Lu₂(Pt-L)₂(DPEPO)₂]⁶⁺ 603.1980, found 603.1988.

Figure S2. ¹³C NMR spectrum of ligand Pt-L (100MHz, CDCl₃, 298 K).

Figure S4. 1 H NMR spectrum of La₂(Pt-L)₂(ClO₄)₆ (400 MHz, CD₃CN, 298 K).

Figure S6. ¹H COSY spectrum of La₂(**Pt-L**)₂(ClO₄)₆ (400 MHz, CD₃CN, 298 K).

Figure S7. ¹H NMR spectrum of $Eu_2(Pt-L)_2(OTf)_6$ (400 MHz, CD₃CN, 298 K) (The signals of pcam are not detectable, probably due to the paramagnetic property of Eu^{III}).

Figure S8. ¹³C NMR spectrum of $Eu_2(Pt-L)_2(OTf)_6$ (100MHz, CD₃CN, 298 K) (The signals of pcam are not detectable, probably due to the paramagnetic property of Eu^{III}).

Figure S9. ¹H COSY spectrum of Eu₂(Pt-L)₂(OTf)₆ (400 MHz, CD₃CN, 298 K).

Figure S10. ¹H NMR spectrum of $Eu_2(Pt-L)_2(OTf)_6$ (400 MHz, CD₃OD, 298 K) (The signal of pcam are not detectable, probably due to the paramagnetic property of Eu^{III}).

Figure S12. 13 C NMR spectrum of Lu₂(Pt-L)₂(OTf)₆ (100 MHz, CD₃CN, 298 K).

Figure S13. ¹H COSY NMR spectrum of Lu₂(Pt-L)₂(OTf)₆ (400 MHz, CD₃CN, 298 K).

Figure S14. ¹H NMR spectrum of $Lu_2(Pt-L)_2(DPEPO)_2(OTf)_6$ by post-assembly modification (400 MHz, CD₃CN, 298 K).

Figure S15. ¹H NMR spectrum of the redissolved $Lu_2(Pt-L)_2(DPEPO)_2(OTf)_6$ crystals (400 MHz, CD₃CN, 298 K).

Figure S16. ¹H COSY spectrum of the redissolved $Lu_2(Pt-L)_2(DPEPO)_2(OTf)_6$ crystals (400 MHz, CD₃CN, 298 K).

Figure S17. ¹H NMR spectrum of $Lu_2(Pt-L)_2(DPEPO)_2(OTf)_6$ by one pot reaction (400 MHz, CD₃CN, 298 K).

Figure S18. ¹H NMR (400 MHz, 298 K) titration spectra of titrating **Pt-L** with $La(ClO_4)_3$ in CD₃CN.

Figure S19. Highlight ¹H NMR spectra with gradually down field shifted.

Figure S20. Chemical shift difference of the compounds with different equivalent of La(ClO₄)₃.

Figure S21. ¹H NMR (400 MHz, 298 K) titration spectra of titrating **Pt-L** with $Eu(OTf)_3$ in CD₃CN.

2.3 ¹H DOSY spectra

Stokes-Einstein equation:

$$D = \frac{K_B T}{6\pi\eta r}$$
(1)

was applied to estimate the dynamic radius for heterometal-organic macrocycles in solution. D is diffusion coefficient obtained from DOSY spectrum, K_B is Boltzmann constant, T is the absolute temperature, viscosity η was tested to be 0.343 mPa•s, and r is the estimated dynamic radius.

Figure S22. ¹H DOSY spectra of La₂(**Pt-L**)₂(ClO₄)₆ (400 MHz, CD₃CN, 298 K). (D= 7.01×10^{-10} m² s⁻¹).

Figure S23. ¹H DOSY spectra of Eu₂(**Pt-L**)₂(OTf)₆ (400 MHz, CD₃CN, 298 K) (D= 6.93×10^{-10} m² s⁻¹).

Figure S24. ¹H DOSY spectra of $Lu_2(Pt-L)_2(DPEPO)_2(OTf)_6$ (400 MHz, CD₃CN, 298 K) (D=6.61×10⁻¹⁰ m² s⁻¹).

3. Photophysical property

3.1 UV-Vis absorption and Fluorescence Spectra

Figure S25. UV/Vis absorption spectra of **Pt-L**, $Eu_2(Pt-L)_2(OTf)_6$ and $Eu_2(Pt-L)_2(DPEPO)_2(OTf)_6$ in CH₃CN.

Figure S26. Excitation and emission spectrum of ligand **Pt-L** at different wavelengths in CH₃CN ($c= 1 \times 10^{-5}$ M, slits =4-4).

Figure S27. Excitation spectrum and emission spectrum of $Eu_2(Pt-L)_2(OTf)_6$ in CH₃CN (c= 1×10^{-5} M, slits =0.9-0.9).

Figure S28. Excitation and emission spectrum of $Eu_2(Pt-L)_2(OTf)_6$ at different wavelengths in CH₃CN (c= 1×10^{-5} M, slits =0.9-0.9, λ_{em} =614nm).

Figure S29. Excitation spectrum and emission spectrum of $Eu_2(Pt-L)_2(DPEPO)_2(OTf)_6$ in CH₃CN, (c= 1×10⁻⁵ M, slits =0.6-0.6).

Figure S30. The excitation and emission spectra of $Gd_2(\mathbf{Pt-L})_2(\mathbf{OTf})_6$ (powder, 77 k, slits =6-6).

3.2 Lifetime measurement

Figure S31. Excited state decay curve (black line) with mono exponential fit (red line) of $Eu_2(\mathbf{Pt-L})_2$ (1×10⁻⁵ M in CH₃CN, $\lambda_{ex} = 368$ nm, $\lambda_{em} = 614$ nm).

Figure S32. Excited state decay curve (black line) with mono exponential fit (red line) of $Eu_2(Pt-L)_2(DPEPO)_2$ (1×10⁻⁵ M in CH₃CN, $\lambda_{ex} = 368$ nm, $\lambda_{em} = 614$ nm).

The intrinsic quantum yields of europium can be determined by the following two equations:^[2]

$$\Phi = \frac{A_{RAD}}{A_{RAD} + A_{ND}} = \frac{\tau_{obs}}{\tau_{rad}}$$
(2)

$$A_{RAD} = \frac{1}{\tau_{rad}} = A_{MD,O} n^3 \left(\frac{I_{tot}}{I_{MD}}\right)$$
(3)

Where, A_{RAD} and A_{NR} are radiative and non-radiative decay rate, respectively. τ_{obs} and τ_{rad} are observed and radiative lifetimes, respectively. n is the refractive index of the medium, while I_{tot} is the integrated emission of the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0 - 6) transition, and I_{MD} is the integrated emission of the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transition. $A_{MD,0} = 14.65 \text{ s}^{-1}$ is the spontaneous emission probability emission probability of magnetic dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{I}$ transition.

The efficiency of lanthanide sensitization (Φ_{sens}) is the ratio between $\Phi_{overall}$ (determined experimentally) and Φ_{Ln} :^[3]

$$\Phi_{sense} = \frac{\Phi_{overall}}{\Phi_{Ln}} \tag{4}$$

Table S1. Summary of photophysical data for the ligand and heterometal-organic macrocycles.

Complex	$\epsilon/10^4$ [M ⁻¹ cm ⁻¹]	λ_{ex}^{max} [nm]	λ_{em}^{ax} [nm]	$ au_{obs}$	q ^[a]	$oldsymbol{\Phi}_{overall}^{[\mathrm{b}]}$ [%]	$arPsi_{Ln}$ [%]	$\Phi_{sens}^{ [c]}$ [%]
Pt-L	1.18	366	505	5.78ns	-	1.4	-	-
Eu ₂ (Pt-L) ₂	5.44	368	614	1.06ms	2.95	30.4	49.8	61.0
Eu ₂ (Pt-L) ₂ (DPEPO) ₂	6.07	368	614	1.69ms	0.34	79.4	89.9	88.3

[a] Number of coordinated solvent molecules; [b] Overall luminescence quantum yield; [c] Efficiency of ligand sensitization.

3.3 Quantum yield

Figure S34. Quantum yield of $Eu_2(Pt-L)_2$ in solid state (298K, powder, λ_{ex} =368nm).

Figure S35. Quantum yield of $Eu_2(Pt-L)_2$ with 2equiv MAL in CH₃CN (298K, c=1×10⁻⁵ M, λ_{ex} =368nm).

Figure S36. Quantum yield of Eu₂(**Pt-L**)₂ with 2equiv MET in CH₃CN (298K, $c=1 \times 10^{-5}$ M, $\lambda_{ex}=368$ nm).

Figure S37. Quantum yield of Eu₂(**Pt-L**)₂ with 2equiv OMA in CH₃CN (298K, $c=1 \times 10^{-5}$ M, $\lambda_{ex}=368$ nm).

Figure S38. Quantum yield of Eu₂(Pt-L)₂(DPEPO)₂ in CH₃CN (298K, c=1×10⁻⁵ M, λ_{ex} =368nm).

Figure S39. Quantum yield of $Eu_2(Pt-L)_2(DPEPO)_2$ in solid state (298K, powder, λ_{ex} =368nm).

3.3 Number of coordinated solvent molecules

Here, empirical equation is used to determine the number of solvent molecules q coordinated to Eu^{III} centers in compounds.

$$q = A(\tau_{\text{methanol}}^{-1} - \tau_{\text{deutero-methanol}}^{-1} - B)$$
 (5)

Where, empirically coefficients A = 2.1 and B = 0 were determined in methanol and Methanol-d4 condition. The calculated q values is 2.95 for Eu₂(**Pt-L**)₂, And 0.34 for Eu₂(**Pt-L**)₂(DPEPO)₂.

Figure S40. Excited state decay curve (black line) with mono exponential fit (red line) of $Eu_2(\mathbf{Pt-L})_2$ (2×10⁻⁵ M in CD₃OD, $\lambda_{ex} = 368$ nm, $\lambda_{em} = 614$ nm).

Figure S41. Excited state decay curve (black line) with mono exponential fit (red line) of $Eu_2(\mathbf{Pt-L})_2 (2 \times 10^{-5} \text{ M in CD}_3 \text{OH}, \lambda_{ex} = 368 \text{ nm}, \lambda_{em} = 614 \text{ nm}).$

Figure S42. Excited state decay curve (black line) with mono exponential fit (red line) of $Eu_2(Pt-L)_2(DPEPO)_2$ (2×10⁻⁵ M in CD₃OD, $\lambda_{ex} = 368$ nm, $\lambda_{em} = 614$ nm).

Figure S43. Excited state decay curve (black line) with mono exponential fit (red line) of $Eu_2(Pt-L)_2(DPEPO)_2$ (2×10⁻⁵ M in CD₃OH, $\lambda_{ex} = 368$ nm, $\lambda_{em} = 614$ nm).

4. Organophosphorus sensing

4.1 Fluorescent titration

Benesi-Hildebrand equation:

$$\frac{1}{F-F_0} = \frac{1}{K_a(F_{max}-F_0)[A]^2} + \frac{1}{F_{max}-F_0}$$
(6)

was used to estimate the binding constant. Where: A is the concentration of OPs. F_0 and F are the fluorescence intensity of Eu₂(**Pt-L**)₂ in the absence and presence of OPs, respectively. F_{max} is the fluorescence intensity obtained with excess of OPs. K_a is the binding constant.

Scheme S2. The chemical structures of the pesticides studied.

Figure S44. (A) Fluorescent titration spectra of $Eu_2(\mathbf{Pt-L})_2$ in CH₃CN (1×10⁻⁵M, $\lambda_{ex} = 368$ nm) upon addition of different equiv of OMA. (B) Changes of the fluorescence emission at 614 nm of $Eu_2(\mathbf{Pt-L})_2$ containing different equiv of OMA.

Figure S45. Job's plot confirming the 2:1 binding stoichiometry of OMA with Eu₂(Pt-L)₂.

Figure S46. The Benesi-Hildebrand plot for determining K_a of OMA with $Eu_2(Pt-L)_2$.

Figure S47. (A) Fluorescent titration spectra of Eu_2L_2 in CH₃CN (1×10⁻⁵M, λ_{ex} = 368 nm) upon addition of different equiv of MAL. (B) Changes of the fluorescence emission at 614 nm of $Eu_2(\mathbf{Pt-L})_2$ containing different equiv of MAL.

Figure S48. Job's plot confirming the 2: 1binding stoichiometry of MAL with $Eu_2(Pt-L)_2$.

Figure S49. The Benesi-Hildebrand plot for determining K_a of MAL with $Eu_2(Pt-L)_2$.

Figure S50. (A) Fluorescent titration spectra of $Eu_2(\mathbf{Pt-L})_2$ in CH₃CN (1×10⁻⁵M, $\lambda_{ex} = 368$ nm) upon addition of different equiv of MET. (B) Changes of the fluorescence emission at 614 nm of $Eu_2(\mathbf{Pt-L})_2$ containing different equiv of MET.

Figure S51. Job's plot confirming the 2: 1binding stoichiometry of MET with Eu₂(Pt-L)₂.

Figure S52. The Benesi-Hildebrand plot for determining K_a of MET with Eu₂(**Pt-L**)₂.

Figure S53. (A) Fluorescent titration spectra of $Eu_2(\mathbf{Pt-L})_2$ in CH₃CN (1×10⁻⁵M, $\lambda_{ex} = 368$ nm) upon addition of different equiv of MOL. (B) Changes of the fluorescence emission at 614 nm of $Eu_2(\mathbf{Pt-L})_2$ containing different equiv of MOL.

Figure S54. (A) Fluorescent titration spectra of $Eu_2(\mathbf{Pt-L})_2$ in CH₃CN (1×10⁻⁵M, λ_{ex} =368 nm) upon addition of different equiv of BFT. (B) Changes of the fluorescence emission at 614 nm of $Eu_2(\mathbf{Pt-L})_2$ containing different equiv of BFT.

Figure S55. (A) Fluorescent titration spectra of $Eu_2(Pt-L)_2$ in CH₃CN (1×10⁻⁵M, $\lambda_{ex} = 368$ nm) upon addition of different equiv of MSP-Na. (B) Changes of the fluorescence emission at 614 nm of $Eu_2(Pt-L)_2$ containing different equiv of MSP-Na.

Figure S56. (A) Fluorescent titration spectra of $Eu_2(\mathbf{Pt-L})_2$ in CH₃CN (1×10⁻⁵M, $\lambda_{ex} = 368$ nm) upon addition of different equiv of IPC. (B) Changes of the fluorescence emission at 614 nm of $Eu_2(\mathbf{Pt-L})_2$ containing different equiv of IPC.

4.2 UV-Vis titration

Figure S57. UV-Vis titration spectra of $Eu_2(Pt-L)_2$ in CH_3CN (1×10⁻⁵M) upon addition of different equiv of OMA and Changes of the UV-Vis absorbance at 368 nm of $Eu_2(Pt-L)_2$ containing different equiv of OMA.

Figure S58. UV-Vis titration spectra of $Eu_2(Pt-L)_2$ in CH₃CN (1×10⁻⁵M) upon addition of different equiv of MAL and Changes of the UV-Vis absorbance at 368 nm of $Eu_2(Pt-L)_2$ containing different equiv of MAL.

Figure S59. UV-Vis titration spectra of $Eu_2(Pt-L)_2$ in CH_3CN (1×10⁻⁵M) upon addition of different equiv of MET and Changes of the UV-Vis absorbance at 368 nm of $Eu_2(Pt-L)_2$ containing different equiv of MET.

4.3 Lifetime measurement

Figure S60. Excited state decay curve of $Eu_2(Pt-L)_2$ complexes with the addition of 2 equiv pesticides.

Figure S61. Excited state decay curve of $Eu_2(Pt-L)_2$ complexes with the addition of 2.0 equiv pesticides.

Table S2. Excited state decay curve of $Eu_2(Pt-L)_2$ complexes with the addition of 2.0 equiv pesticides.

	Eu_2L_2	Eu_2L_2+	Eu_2L_2+	Eu_2L_2+	Eu ₂ L ₂ +IPC	Eu_2L_2+	Eu_2L_2+	Eu_2L_2+
		BFT	MOL	MSP-Na		MET	MAL	OMA
τ	1.060	1.099	1.101	1.017	1.095	1.225	1.281	1.306
χ^2	1.127	1.371	1.353	1.104	1.325	1.007	1.146	1.049

4.4 Limit of detection (LOD)

LOD=
$$3\delta/S$$
 (7)
 $\delta = \sqrt{\frac{\Sigma(F_0 - \overline{F_0})^2}{N-1}} = 483.5781(N=20)$ (8)

Where: S is the slope of the calibration curve, Standard deviation (δ) is calculated from twenty times measurements of blank solutions.

	OMA	MAL	MET
LOD (nM)	19	21	26

Figure S62. (A) Fluorescent titration spectra of $Eu_2(\mathbf{Pt-L})_2$ in CH_3CN (1×10⁻⁵M, $\lambda_{ex} = 368$ nm) upon addition of different equiv of OMA. (B) Fitted curve of luminescent intensity versus OMA concentration.

Figure S63. (A) Fluorescent titration spectra of $Eu_2(Pt-L)_2$ in CH_3CN (1×10⁻⁵M, $\lambda_{ex} = 368$ nm) upon addition of different equiv of MAL. (B) Fitted curve of luminescent intensity versus MAL concentration.

Figure S64. (A) Fluorescent titration spectra of $Eu_2(Pt-L)_2$ in CH₃CN (1×10⁻⁵M, $\lambda_{ex} = 368$ nm) upon addition of different equiv of MET. (B) Fitted curve of luminescent intensity versus MET concentration.

5. Mass spectra

Figure S66. ESI-TOF-MS spectra for Eu₂(Pt-L)₂(OTf)₆.

	Acquisition	D 0010/7/1			
		Acquisition D 2018/7/16 19:43:59			
2-b,4 01 367.d	-				
	Operator B	DAL@DE			
	Instrumen i	mpact II	1825265.1013		
			-		
Positive	Set	Nebulizer	1.2 Bar		
4000 V	Set	Dry Heater	200 °C		
-500 V	Set	Dry Gas	4.5 1/min		
2000 V	Set	Divert Valve	Waste		
0 nA	Set	APCI Heater	0 °C		
	2-b,4_01_367.d Positive 4000 V - 500 V 2000 V 0 nA	Positive Set 2-b,4_01_367.d Operator B Instrumen i Positive Set 4000 V Set 2000 V Set 2000 V Set 0 nA Set	Acquisition D 2018/7/1 2-b,4_01_367.d Operator BDAL@DE Instrumen impact II Positive Set Nebulizer 4000 V Set Dry Heater -500 V Set Dry Gas 2000 V Set Dry Gas 2000 V Set Dry Case 0 nA Set APCI Heater		

Figure S67. ESI-TOF-MS spectra for $Lu_2(Pt-L)_2(OTf)_6$.

Figure S68. ESI-TOF-MS spectra for Eu₂(Pt-L)₂(OTf)₆ in CH₃OH.

Figure S69. ESI-TOF-MS spectra for Eu₂(Pt-L)₂(DPEPO)₂(OTf)₆.

Figure S70. ESI-TOF-MS spectra for Lu₂(Pt-L)₂(DPEPO)₂(OTf)₆.

Figure S71. ESI-TOF-MS spectra for Eu₂(Pt-L)₂(OTf)₆ containing 2.0 equiv of OMA.

Figure S72. ESI-TOF-MS spectra for Eu₂(Pt-L)₂(OTf)₆ containing 2.0 equiv of MAL.

Figure S73. ESI-TOF-MS spectra for Eu₂(Pt-L)₂(OTf)₆ containing 2.0 equiv of MET.

6. Single crystal X-ray diffraction studies

The X-ray diffraction studies for heterometal-organic macrocycles were carried out on Bruker D8 VENTURE photon II diffractometer with Iµs 3.0 microfocus X-ray source using APEX III program.^[4] Data reduction was performed with the saint and SADABS package. Both structures were solved by direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement using the SHELX software package.^[5] solvent molecules were highly disordered and could not be reasonably located. These residual intensities were removed by PLATON/SQUEEZE routine.^[6]

Identification code	$La_2(\mathbf{Pt-L})_2(\mathrm{ClO}_4)_6$		
Empirical formula	C104 H136 Cl6 La2 N16 O34 Pt2		
Formula weight	3034.98		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 14.1633(9) Å	a= 73.946(3) °.	
	b = 15.5448(10) Å	b=71.033(3)°.	
	c = 18.1762(12) Å	g = 88.863(3) °.	
Volume	3626.1(4) Å3		
Z	1		
Density (calculated)	1.390 Mg/m3		
Absorption coefficient	2.680 mm-1		
F(000)	1516		
Crystal size	0.10 x 0.08 x 0.07 mm3		
Theta range for data collection	2.386 to 24.782 °.		
Index ranges	-16<=h<=16, -18<=k<=18, -21<=l<=21		
Reflections collected	93911		
Independent reflections	12437 [R(int) = 0.1001]		
Completeness to theta = 24.782 $^{\circ}$	99.7 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F2		
Data / restraints / parameters	12437 / 4 / 678		
Goodness-of-fit on F2	1.041		
Final R indices [I>2sigma(I)]	R1 = 0.0660, wR2 = 0.1532		
R indices (all data)	R1 = 0.1047, wR2 = 0.1857		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.375 and -3.317 e.Å-3		

Table S4. Crystal data and structure refinement for $La_2(Pt-L)_2(ClO_4)_6$.

Identification code	$Eu_2(\mathbf{Pt-L})_2(\mathbf{OTf})_6$	$Eu_2(\mathbf{Pt-L})_2(\mathbf{OTf})_6$		
Empirical formula	C114 H142 Eu2 F18 N1	C114 H142 Eu2 F18 N18 O30 Pt2 S6		
Formula weight	3472.91	3472.91		
Temperature	100(2) K	100(2) K		
Wavelength	0.71073 Å	0.71073 Å		
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 14.8876(11) Å	a= 103.870(2) °.		
	b = 16.7086(12) Å	b= 110.195(2) °.		
	c = 18.0513(12) Å	g = 92.844(3) °.		
Volume	4047.9(5) Å3			
Z	1			
Density (calculated)	1.425 Mg/m3			
Absorption coefficient	2.649 mm-1	2.649 mm-1		
F(000)	1732	1732		
Crystal size	0.11 x 0.10 x 0.10 mm3	0.11 x 0.10 x 0.10 mm3		
Theta range for data collection	2.256 to 25.196 °.	2.256 to 25.196 °.		
Index ranges	-17<=h<=17, -20<=k<=	-17<=h<=17, -20<=k<=19, -21<=l<=21		
Reflections collected	111533	111533		
Independent reflections	14503 [R(int) = 0.0753]	14503 [R(int) = 0.0753]		
Completeness to theta = 25.196°	99.7 %			
Absorption correction	None	None		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F2		
Data / restraints / parameters	14503 / 0 / 863	14503 / 0 / 863		
Goodness-of-fit on F2	1.045			
Final R indices [I>2sigma(I)]	R1 = 0.0398, $wR2 = 0.0$	R1 = 0.0398, $wR2 = 0.0939$		
R indices (all data)	R1 = 0.0610, wR2 = 0.1	R1 = 0.0610, $wR2 = 0.1046$		
Extinction coefficient	n/a			
Largest diff. peak and hole	1.811 and -1.001 e.Å-3			

Table S5. Crystal data and structure refinement for $Eu_2(Pt-L)_2(OTf)_6$.

-				
Identification code	Lu ₂ (Pt-L) ₂ (DPEPO) ₂ (O	Lu ₂ (Pt-L) ₂ (DPEPO) ₂ (OTf) ₆		
Empirical formula	C178 H194 F6 Lu2 N16	C178 H194 F6 Lu2 N16 O20 P4 Pt2 S2		
Formula weight	3919.60			
Temperature	298(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2 ₁ /n			
Unit cell dimensions	a = 18.6809(11) Å	a= 90 °.		
	b = 15.9420(10) Å	b= 92.432(2) °		
	c = 41.772(3) Å	g = 90 °.		
Volume	12429.1(13) Å3			
Z	2			
Density (calculated)	1.047 Mg/m3			
Absorption coefficient	2.004 mm-1	2.004 mm-1		
F(000)	3956	3956		
Crystal size	0.12 x 0.10 x 0.08 mm3	0.12 x 0.10 x 0.08 mm3		
Theta range for data collection	2.198 to 30.568 °.	2.198 to 30.568 °.		
Index ranges	-26<=h<=26, -22<=k<=	-26<=h<=26, -22<=k<=22, -59<=l<=59		
Reflections collected	423376	423376		
Independent reflections	38017 [R(int) = 0.0856]	38017 [R(int) = 0.0856]		
Completeness to theta = 25.242 $^{\circ}$	99.9 %	99.9 %		
Absorption correction	None	None		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F2		
Data / restraints / parameters	38017 / 1007 / 998	38017 / 1007 / 998		
Goodness-of-fit on F2	1.050			
Final R indices [I>2sigma(I)]	R1 = 0.0776, wR2 = 0.2	R1 = 0.0776, $wR2 = 0.2185$		
R indices (all data)	R1 = 0.1574, wR2 = 0.2	697		
Extinction coefficient Largest diff. peak and hole	n/a 1.627 and -1.119 e.Å-3	n/a 1.627 and -1.119 e.Å-3		

Table S7. Crystal data and structure refinement for $Lu_2(Pt-L)_2(DPEPO)_2(OTf)_6$.

Figure S74. Ortep drawing of the asymmetric unit in the crystal structure of $La_2(Pt-L)_2(ClO_4)_6$ at 30% probability level.

Figure S75. Ortep drawing of the asymmetric unit in the crystal structure of $Eu_2(Pt-L)_2(OTf)_6$ at 30% probability level.

Figure S76. Ortep drawing of the asymmetric unit in the crystal structure of $Lu_2(Pt-L)_2(DPEPO)_2(OTf)_6$ at 30% probability level.

7. References

- a) G. Muller, B. Schmidt, J. Jiricek, G. Hopfgartner, J. P. Riehl, J.-C. G. Bünzli, C. Piguet, *Journal of the Chemical Society, Dalton Transactions* 2001, 2655-2662; b) T. J. Egan, K. R.
 Koch, P. L. Swan, C. Clarkson, D. A. Van Schalkwyk, P. J. Smith, *J. Med. Chem.* 2004, 47, 2926-2934.
- [2] S. I. Klink, G. A. Hebbink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van Veggel, M. H. V. Werts, *The Journal of Physical Chemistry A* 2002, *106*, 3681-3689.
- [3] F. Xue, Y. Ma, L. Fu, R. Hao, G. Shao, M. Tang, J. Zhang, Y. Wang, *Physical chemistry chemical physics : PCCP* **2010**, *12*, 3195-3202.
- [4] APEX III, Data collection software (version 2017.3)
- [5] Sheldrick, G. M., Acta Crystallogr. Sect. A, 2008, 64, 112.
- [6] Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7–13.