Supporting Information for

Evaluation of Dicopper Azacryptand Complexes in Aqueous CuAAC Reactions and Their Tolerance Toward Biological Thiols

Thi V. Tran, Garret Couture, Loi H. Do*

Department of Chemistry, University of Houston, Houston, Texas, 77204

TABLE OF CONTENTS		Page(s)	
Experimental			
Scheme S1	Synthetic of Ligands L2, L3, L4, and L6	S2	
Scheme S2	Synthesis of Copper Complexes 1-3	S 3	
Table S1	Comparison of Cu Catalysts in Water/Acetone	S4	
Table S2	Additional CuAAC Reactions	S 5	
	Synthesis and Characterization	S6–S7	
NMR Data			
Figure S1	¹ H NMR Spectrum of 1a	S 8	
Figure S2	¹³ C NMR Spectrum of 1a	S 9	
Figure S3	¹ H NMR Spectrum of 1b	S10	
Figure S4	¹ H NMR Spectrum of 2a	S11	
Figure S5	¹³ C NMR Spectrum of 2a	S12	
Figure S6	¹ H NMR Spectrum of 2b	S13	
Figure S7	¹³ C NMR Spectrum of 2b	S14	
Figure S8	¹ H NMR Spectrum of 3a	S15	
Figure S9	¹³ C NMR Spectrum of 3a	S16	
Figure S10	¹ H NMR Spectrum of 3b	S17	
Figure S11	¹³ C NMR Spectrum of 3b	S18	
Spectroscopic Studies			
Figure S12	Reaction of 1a with Thiols	S19	
Figure S13	Reaction of 3a with Thiols	S20	
References		S21	

Experimental

Scheme S1. Procedures for the synthesis of ligands L2, L3, L4, and L6.

Scheme S2. Procedures for the synthesis of copper complexes 1-3.

Ph—, u	Cu complex sodium ascorba	e N=N	
N ₃ + H	H ₂ O/acetone 37°C, 24 h	4	
Entry	Cu Complex	GC Yield (%) ^b	
1	1 a	43	
2	1b	6	
3	2a	20	
4	2b	95	
5	3 a	trace	
6	3 b	trace	
7	CuSO ₄	73	

Table S1. Comparison of Cu Catalysts in Water/Acetone^a

^{*a*}Reaction conditions: benzyl azide (1.00 mmol), phenylacetylene (1.37 mmol), Cu (0.10 mmol, 10 mM), sodium ascorbate (1.50 mmol) in H₂O/acetone (3:2, 10 mL) at 37°C for 24 h. ^{*b*}Average yields from duplicate runs.

Ph+ N3 +	s	Cu complex or ligand odium ascorbate (if any)	N=N
	H - <u></u> −Ph -	H₂O 37°C, 24 h	Ph <u></u> N√∕─Ph 4
Entry	Compound	l Ascrobate	GC Yield (%)
1	1a	No	22
2	1b	No	99
3	2a	No	82
4	2b	No	99
5	3 a	No	34
6	3 b	No	44
7	CuTBTA	No	99
8	L3 ligand	Yes	0
9	TBTA ligan	d Yes	0

Table S2. Additional CuAAC Reactions^a

^{*a*}Reaction conditions: benzyl azide (1.00 mmol), phenylacetylene (1.37 mmol), Cu (0.5 μ mol) or ligand alone (0.5 μ mol), sodium ascorbate (0.15 mmol, if any) in H₂O (10 mL) at 37°C for 24 h.

Synthesis and Characterization

Preparation of L2. This synthesis was modified from a literature procedure.¹ Benzaldehyde (3.0

g, 28.3 mmol) wad added to a mixture of tris(2-aminoethyl)amine (0.73 g, 5.0 mmol) in 100 mL of ethanol. The mixture was stirred under reflux overnight. It was then cooled to RT, treated with solid NaBH₄ (1.0 g, 26.4 mmol), and then continued to reflux for another 24 h. The volatiles were removed by rotary evaporation and the residues were dissolved in CH₂Cl₂ (100 mL). An aqueous solution of NaHCO₃ (10%, 50 mL) was added and the mixture was shaken. The organic layer was separated, washed with

H₂O (100 mL), dried over Na₂SO₄, filtered, and then evaporated to dryness. The crude product was purified by column chromatography using basic alumina (Act. I, 50-200 mess) and eluted with CH₂Cl₂/MeOH/NEt₃ (95.5/4.0/0.5) to afford a light yellow oil (0.41 g, 1.1 mmol, 22%). The NMR spectra of the product matches those reported previously.¹ ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 7.35-7.20 (m, 15H), 3.73 (s, 6H), 2.66 (t, *J*_{HH} = 6Hz, 6H), 2.56 (t, *J*_{HH} = 6Hz, 6H).

Preparation of L3. This synthesis was modified from a literature procedure.^{2,3} To a stirred

solution of tris(2-aminoethyl)amine (20 mmol, 2.92 g) in MeCN (250 mL) was added dropwise a mixture of isophthalaldehyde (30 mmol, 4.03 g) in MeCN (150 ml) over a period of 1 h at RT. After stirring for additional 24 h, a large amount of a white precipitate had formed. The solid was isolated by filtration and then washed with Et₂O to afford the desired product (5.34 g, 9.1 mmol, 91%). The NMR spectra of the product matches those reported previously.^{2,3} ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 8.18 (dd, *J*_{HH} = 7.7, 1.6 Hz, 6H), 7.57 (s, 6H), 7.52 (t, JHH = 8 Hz, 3H), 5.31 (m, 3H), 3.77-2.69 (m, 24H). ¹³C NMR

(CDCl₃, 100 MHz): δ (ppm) = 160.81, 136.94, 132.46, 129.10, 127.46, 60.09, 56.07.

Preparation of L4. This synthesis was modified from a literature procedure.³ Solid NaBH₄ (1 g, 26.4 mmol) was added slowly portion-wise over 15 min to a stirred solution of L3 (1.1 g, 1.88 mmol) in methanol (100 mL) at RT. The mixture was refluxed under nitrogen overnight. The solution was then cooled to RT and the solvent was removed by rotary evaporation. The residue was dissolved in CH₂Cl₂ (100 mL) and combined with aqueous NaHCO₃ (10%, 50 mL). The product was extracted into CH₂Cl₂, washed with H₂O (50 mL), and then dried over Na₂SO₄. Removal of solvent afforded a white sticky solid (0.51 g, 0.85 mmol, 45%). The NMR spectra of the product matches those reported previously.³ ¹H NMR

(CDCl₃, 500 MHz): δ (ppm) = 7.21-7.13 (m, 9H), 7.07 (s, 3H), 3.60 (m, 12H), 2.62-2.60 (m, 12H), 2.57-2.55 (m, 12H).

Preparation of L6. This synthesis was modified from a literature procedure.⁴ Terephthaldehyde

(2.01 g, 15.0 mmol) was dissolved in 150 mL of ethanol in a 500 mL threeneck round bottom flask. The flask was equipped with a reflux condenser on one neck and an addition funnel on another. The solution was heated to 78°C while tris(2-aminoethyl)amine (1.46 g, 10.0 mmol) in 50 mL of ethanol was added slowly dropwise using the addition funnel. The reaction mixture was then refluxed overnight. The next day, the solution was filtered to remove

insoluble materials and the filtrate was transferred to another round bottom flask. The mixture was then treated with solid NaBH₄ (2 g, 10.5 equiv.). The solution was refluxed overnight and cooled to RT. The volatiles were removed by rotary evaporation and the residue was dissolved in CH₂Cl₂ (200 mL). The organic layer was combined with aqueous NaHCO₃ (10%, 100 mL) and shaken. The organic layer was separated, washed with H₂O (100 mL), dried with Na₂SO₄, removed solvent and recrystallized with toluene/hexane to afford solid white product (0.42 g, 0.7 mmol, 14%). NMR spectroscopic characterization of the product matches that measured previously.⁴ ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 6.87 (s, 12H), 3.68 (s, 12H), 2.83-2.81 (m, 12H), 2.67-2.65 (m, 12H).

Figure S1. ¹H NMR spectrum (CDCl₃, 400 MHz) of complex 1a.

Figure S2. ¹³C NMR spectrum (CD₃CN, 126 MHz) of complex 1a.

Figure S3. ¹H NMR spectrum (CD₃CN, 400 MHz) of complex 1b.

Figure S4. ¹H NMR spectrum (CD₃CN, 400 MHz) of complex 2a.

Figure S5. ¹³C NMR spectrum (CD₃CN, 100 MHz) of complex 2a.

Figure S6. ¹H NMR spectrum (CD₃CN, 400 MHz) of complex **2b**. The broad peaks suggest that the complex undergoes dynamic structural changes in solution.

Figure S7. ¹³C NMR spectrum (CD₃CN, 100 MHz) of complex 2b.

Figure S8. ¹H NMR spectrum (CD₃CN, 400 MHz) of complex 3a.

Figure S9. ¹³C NMR spectrum (CD₃CN, 126 MHz) of complex 3a.

Figure S10. ¹H NMR spectrum (CD₃CN, 400 MHz) of complex **3b**. The broad peaks suggest that the complex undergoes dynamic structural changes in solution.

Figure S11. ¹³C NMR spectrum (CD₃CN, 100 MHz) of complex 3b.

Figure S12. Reaction of complex 1a (50 μ M) with biological thiols (100 μ M). Plots A and B show the UV-vis absorption spectra (H₂O) of 1a/glutathione and 1a/cysteine, respectively. The dotted trace shows the spectrum of 1a without any additives. The solid black traces were obtained right after mixing 1a with either glutathione or cysteine and the solid red traces were obtained after ~60-80 min. Plot C shows the NMR spectra (D₂O/CD₃CN (1:2), 600 MHz) of 1a, 1a/glutathione (1:2) and 1a/cysteine (1:2) as indicated. The concentration of 1a in the NMR sample was 6.7 mM.

Figure S13. Reaction of complex 3a (50 μ M) with biological thiols (100 μ M). Plots A and B show the UV-vis absorption spectra (H₂O) of 3a/glutathione and 3a/cysteine, respectively. The dotted trace shows the spectrum of 3a without any additives. The solid black traces were obtained right after mixing 3a with either glutathione or cysteine and the solid red traces were obtained after ~60-80 min. Plot C shows the NMR spectra (D₂O/CD₃CN (1:2), 600 MHz) of 3a, 3a/glutathione (1:2) and 3a/cysteine (1:2) as indicated. The concentration of 3a in the NMR sample was 6.7 mM.

References

- (1) Charalambidis, G.; Ladomenou, K.; Boitrel, B.; Coutsolelos, A. G. *Eur. J. Org. Chem.* **2009**, *2009*, 1263-1268.
- (2) MacDowell, D.; Nelson, J. Tetrahedron Lett. 1988, 29, 385-386.
- (3) Möller, F.; Merz, K.; Herrmann, C.; Apfel, U. P. Dalton Trans. 2016, 45, 904-907.
- (4) Whiteford, J. A. Bridged Polycyclic Compound Based Compositions for the Inibition and Amelioration of Disease. US 2008/0275141 A1, Nov. 6, 2008.