Potassium Octahydridotriborate: Diverse Polymorphism in a Potential Hydrogen Storage Material and Potassium Ion Conductor

Supplementary Information

Jakob B. Grinderslev,^{[a]1} Kasper T. Møller,*^{[a,b]1} Yigang Yan,^[a] Xi-Meng Chen,^[c] Yongtao Li,^[e] Hai-Wen Li,^[e] Wei Zhou,^[f] Jørgen Skibsted,^[a] Xuenian Chen,*^[c,d] Torben R. Jensen*^[a]

[a] Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
[b] Department of Imaging and Applied Physics, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, 6845 WA, Australia.
[c] School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
[d] College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
[e] Platform of Inter/Transdisciplinary Energy Research (Q-PIT), International Research Center for Hydrogen Energy, WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

[f] NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States

1 'shared first author'

Corresponding Authors: Kasper T. Møller (*kasper.moller@curtin.edu.au*); Xuenian Chen (*xnchen@htu.edu.cn*); Torben R. Jensen (*trj@chem.au.dk*).

Figure S1. Rietveld refinement plot of SR PXD data measured at -52 °C, $\lambda = 0.70848 \text{ Å}$, for α -KB₃H₈, showing experimental (red circles) and calculated (black line) PXD patterns, and a difference plot below (blue line). Top tick (α -KB₃H₈, *P*2₁/*m*, 98.9 wt%), bottom tick (KBH₄, *Fm-3m*, 1.1 wt%). Final discrepancy factors: R_p = 2.51 %, R_{wp} = 4.02 % (not corrected for background), R_p = 14.6 %, R_{wp} = 18.6 % (conventional Rietveld R-factors), R_{Bragg}(KB₃H₈) = 6.26 %, R_{Bragg}(KBH₄) = 7.86 %, and global χ^2 = 27.9. Due to anisotropic peak broadening, selected *hkl* reflections (-*111*, -*101*, -*121*, -*131*, 020) were refined as described in reference [1]

Figure S2. Rietveld refinement plot of SR PXD data measured at 25 °C, $\lambda = 0.70848$ Å, for α' -KB₃H₈, showing experimental (red circles) and calculated (black line) PXD patterns, and a difference plot below (blue line). Top tick (α' -KB₃H₈, *Cmcm*, 98.5 wt%), bottom tick (KBH₄, *Fm-3m*, 1.5 wt%). Final discrepancy factors: R_p = 2.12 %, R_{wp} = 2.74 % (not corrected for background), R_p = 16.4%, R_{wp} = 15.4 % (conventional Rietveld R-factors), R_{Bragg}(α' -KBH₄) = 7.82 %, R_{Bragg}(KBH₄) = 13.8 %, and global χ^2 = 46.2. Due to anisotropic peak broadening, selected *hkl* reflections (*021, 020, 002, 022, 202, 113, 023, 043, 115, 025, 004, 200, 130, 132*) were refined as described in reference [1]

Figure S3. Rietveld refinement plot of SR PXD data measured at 50 °C, $\lambda = 0.824598$ Å, for β -KB₃H₈, showing experimental (blue circles) and calculated (red line) SR PXD patterns, and a difference plot below (dark grey). Top tick (β -KB₃H₈, *Fm*-3*m*), bottom tick (KBH₄, *Fm*-3*m*). Final discrepancy factors: R_p = 1.00 %, R_{wp} = 1.45 % (not corrected for background), R_p = 18.7 %, R_{wp} = 9.37 % (conventional Rietveld R-factors), R_{Bragg}(β -KB₃H₈) = 4.21 %, R_{Bragg}(KBH₄) = 16.5 %, and global $\chi^2 = 6.12$.

Figure S4. SR PXD data measured at -52 °C, $\lambda = 0.70848 \text{ Å}$, for α -KB₃H₈, shown in the 20 range 9.5 to 11.7°. The full width half maximum values are provided for four selected *hkl* reflections.

Figure S5: Volume per formula unit (*V*/*Z*) extracted from sequential Rietveld refinement of $K_3BH_4B_{12}H_{12}$ from SR PXD data of the as synthesized KB₃H₈ sample measured at Diamond ($\lambda = 0.824598$ Å) in the temperature range 198 to 475 °C.

Figure S6. Rietveld refinement plot of SR PXD data measured at 253 °C, $\lambda = 0.824958$ Å, for KB₃H₈, showing experimental (blue circles) and calculated (red line) SR PXD patterns, and a difference plot below (dark grey). Top tick (KBH₄, *Fm*-3*m*, 21.7 wt%), bottom tick (K₃BH₄B₁₂H₁₂, *Pm*-3, 78.3 wt%). Final discrepancy factors: R_p = 0.45 %, R_{wp} = 0.90 % (not corrected for background), R_p = 5.52 %, R_{wp} = 11.13 % (conventional Rietveld R-factors), R_{Bragg}(KBH₄) = 1.19 %, R_{Bragg}(K₃BH₄B₁₂H₁₂) = 2.18 %, and global χ^2 = 5.75.

Figure S7. PXD pattern of sample **s5** measured at *RT*, $\lambda = 1.54056$ Å. Two crystalline compounds, K₂B₁₂H₁₂ and KB₃H₈, are observed.

References

1. J. Rodríguez-Carvajal. Study of Micro-Structural Effects by Powder Diffraction Using the Program FULLPROF. Available at: http://www.cdifx.univrennes1.fr/fps/Microstructural_effects.pdf (accessed 09-04-2019)