Supporting Information

A highly luminescent Mn⁴⁺ activated LaAlO₃ far-redemitting phosphor for plant growth LEDs: Charge compensation induced Mn⁴⁺ incorporation

Yibo Chen,^{a*} Conghua Yang,^a Meiping Deng,^a Jin He,^a Yiqin Xu,^b Zhao-Qing Liu^{a*}

^aSchool of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Higher Education Mega Center, Guangzhou 510006, P.R. China.

^bGuangdong Institute of Semiconductor Industrial Technology, Guangzhou 510650,

P.R. China.

E-mail: <u>chenyibo@gzhu.edu.cn</u> (Y. Chen); <u>lzqgzu@gzhu.edu.cn</u> (Z. Q. Liu)

Concentration of Mn ⁴⁺ / mol%	Monitoring wavelength / nm	Lifetime / ms
0.05	729	3.4
0.1	729	3.3
0.3	729	2.4
0.5	729	2.1
0.7	729	1.7

Table S1. The decay lifetimes of LAO:Mn⁴⁺,Mg²⁺ with different concentrations of Mn⁴⁺.

Table S2. The chromaticity coordinates of LAO:Mn⁴⁺,Mg²⁺ in 298–433 K.

Temperature/ K	Chromaticity coordinates (<i>x, y</i>)
298	0.7335, 0.2665
313	0.7334, 0.2666
333	0.7333, 0.2667
353	0.7332, 0.2668
373	0.7330, 0.2670
393	0.7328, 0.2672
413	0.7326, 0.2674
433	0.7317, 0.2683

Fig. S1. Rietveld refinement patterns LAO:0.001Mn⁴⁺ phosphor.

Fig. S2. The plotting line of $\ln[(I_0/I_T)-1]$ *vs.* $1/k_BT$ for LAO:Mn⁴⁺,Mg²⁺ phosphor. The value of ΔE is calculated based on a modified Arrhenius equation (S1):

$$I_{\rm T} = \frac{I_0}{1 + A \exp(-\Delta E / k_{\rm B} T)}$$
(S1)

in which I_0 is the initial PL intensity at room temperature; I_T is the PL intensity at a given temperature *T*; ΔE is the activation energy; k_B and *A* refer to Boltzmann constant (8.617E-5 eV/K) and an absolute constant for a definite host. According to the plots of $\ln[(I_0/I_T)-1]$ vs. $1/k_BT$ for LAO:0.001Mn⁴⁺,0.001Mg²⁺ phosphor, the value of ΔE can be roughly derived from the slope to be 0.68 eV.

Fig. S3 The PL intensity of the LAO:Mn⁴⁺,Mg²⁺ phosphor in a heating-andcooling cycle.

Fig. S4. XRD patterns of LAO:Mn⁴⁺,Mg²⁺ and LAO:Mn⁴⁺ phosphors.

Fig. S5. PL spectra of LAO:Mn⁴⁺,Mg²⁺ and LAO:Mn⁴⁺ phosphors (λ_{ex} = 340 nm).

Fig. S6. Quantum yields of LAO:Mn⁴⁺,Mg²⁺ and LAO:Mn⁴⁺ phosphors (λ_{ex} = 340 nm).