Supplementary Information

Stimulus-responsive reversible thermochromism and exciplex emission of a Zn(II) complex and

selective sensing of NH_3 gas

Jinling Miao,*a Yong Nie,*a Zhixin Xiong,a Yongshuai Chai, Shuqing Fu, Hong Yan*b

^aSchool of Chemistry and Chemical Engineering, Institute for Smart Materials & Engineering,

University of Jinan, 250022 Jinan, P. R. China

^bState Key Laboratory of Coordination Chemistry, School of Chemistry and

Chemical Engineering, Nanjing University, 210023 Nanjing, P. R. China

Contents

Experimental section S2
Figure S1. TG curve of 1 under an air atmosphere (temperature range 30 - 800°C)······S3
Figure S2. ¹ H-NMR spectrum of 1B ', the completely rehydrated form of 1B in DMSO- d_6 ·······S4
Figure S3. ¹ H-NMR spectrum of 1A ' in DMSO- <i>d</i> ₆ ······S4
Figure S4. FT-IR spectra of 1, 1A' and 1BS4
Table S1. The absorption peaks of the COO moieties in 1, 1A' and 1B······S5
Figure S5. Emission spectra of H ₂ MPIDA, dihydrated 4,4'-bipy and anhydrous 4,4'-bipyS5
Figure S6. Solid state absorption spectra of 1 and the ligandsS5
Figure S7. Fluorescence lifetime profiles of 1 and the ligandsS6
Table S2. Details of the average lifetime analysis of 1 and the ligands
Figure S8. Solid state excitation spectrum of 1 with emission at 567 nm······S7
Equations S1 and S2. Formation of exciplex ······S7
Figure S9. SEM image of 1B ······S7
Figure S10. PXRD pattern of 1B-NH₃
Figure S11. Emission intensity changes of 1B when exposed to NH ₃ with time, and repeated cycles
(inset) monitored at 570 nm ······S8
Figure S12. ¹ H-NMR spectrum of 1B-NH₃ in DMSO- d_6
Figure S13. ¹³ C-NMR spectrum of 1B-NH ₃ in DMSO- <i>d</i> ₆ ······S8
Table S3. Crystal data and structure refinement parameters for 1
Table S4. Selected bond lengths and angles of 1

Experimental section

Materials

The ligand *N*-(*p*-methylphenyl)iminodiacetic acid (H₂MPIDA) was prepared by the reaction of *p*-methylaniline with chloroacetic acid under basic condition according to the literature method.¹ All other reagents were commercially purchased and used without further purification.

Instruments

The elemental analysis was carried out using a Perkin Elmer 2400II Elemental Analyzer. FT-IR spectra (KBr pellets) were recorded on a Perkin Elmer Spectrum RX I spectrometer in the 4000-400 cm⁻¹ region. NMR spectra were obtained with a Bruker Avance 400 MHz spectrometer. Singlecrystal X-ray diffraction measurements were conducted on an Oxford Diffraction Gemini E diffractometer. The structure was solved by direct methods and refined by a full-matrix least-squares technique on F^2 using SHELXL-2014 programs.² Powder XRD patterns were recorded by using a D8 Focus diffractometer equipped with Cu-K_{α} radiation ($\lambda = 1.5406$ Å). Thermogravimetric analysis (TGA) was carried out on a Perkin Elmer Diamond TG/DTA Analyzer in an air atmosphere in the temperature range 30 - 800 °C (heating rate 10 °C·min⁻¹). Electronic absorption spectra were recorded on a Shimadzu UV-3101PC UV-VIS-NIR Spectrometer. Emission spectra were recorded on an Edinburgh FLS920 spectrometer, using a front-face solid sample configuration. The emission lifetimes were recorded using the time-correlated single-photo-counting method, and the excitation source is an ns flash lamp filled with hydrogen. The SEM picture was taken with an S-2500 machine. ESR spectra were recorded by using an X-band Bruker A300 spectrometer. The frequency of microwaves was 9.86 GHz, the magnetic field was 100 KHz, the center sweeping field was at 3500 G and the modulation amplitude was set as 5 G. The pictures of the color changes of a single crystal were taken with a Leica DM2500 microscope.

Synthesis of [Zn₂(MPIDA)₂(4,4'-bipy)(H₂O)₄]·3H₂O (1)

A solution of $Zn(NO_3)_2 \cdot 6H_2O$ (0.146 g, 0.5 mmol) in 10 mL of water/ethanol (1:1, *V/V*) was added dropwise to a solution of H₂MPIDA (0.112 g, 0.5 mmol) in 10 mL of water/ethanol (1:1, *V/V*). After stirring for 30 min, 4,4'-bipy (0.078 g, 0.5 mmol) was added to the reaction mixture which was further stirred for 1 h at 80 °C. The resulting mixture was filtered to produce a yellowish filtrate. Colorless crystals (0.088 g, yield 41% based on Zn) of 1 suitable for X-ray diffraction started to grow once the filtrate was cooled to room temperature. Anal. Calcd. for C₃₂H₄₄Zn₂N₄O₁₅, C 44.92; H 5.18; N 6.55%. Found: C 44.85; H 5.33; N 6.51%; IR (KBr, cm⁻¹): 3401(s), 2928(w), 1610(s), 1515(m), 1397(s), 1293(m), 806(s), 633(m).

Gas sensing experiments: ca. 5 mg of **1B** powder was dispersed in 0.1 mL of CH₂Cl₂, and drop-cast onto a quartz plate or a piece of filter paper, and the quartz plate/test paper was dried at 50 °C before

use.

The quartz plate was put into a 100-mL Schlenk flask, which was evacuated and ca. 10 mL of gas was injected with a syringe. After ca. 5 min. the quartz plate was taken out and the emission spectrum was measured. In the case of aqueous ammonia, the quartz plate was put into a closed bottle where a few drops of aqueous ammonia were present and the color change of **1B** was observed within 1 min.

In the examination of response time of ammonia, a piece of test paper was put in a capped cuvette and ca. 1 mL of ammonia gas was injected with a syringe and the time-resolved emission spectra were measured immediately after the injection of ammonia.

References

- a) D. K. Patel, D. Choquesillo-Lazarte, J. M. Gonzalez-Perez; A. Dominguez-Martin, A. Matilla-Hernandez, A. Castineiras and J. Niclos-Gutierrez, *Polyhedron*, 2010, 29, 683; b) E. Bugella-Altamirano, D. Choquesillo-Lazarte, J. M. Gonzalez-Perez, M. J. Sanchez-Moreno, R. Marin-Sanchez, J. D. Martin-Ramos, B. Covelo, R. Carballo, A. Castineiras, J. Niclos-Gutierrez, *Inorg. Chim. Acta*, 2002, 339, 160.
- 2 a) G. M. Sheldrick, *Acta Cryst.*, 2015, C71, 3; b) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.*, 2009, 42, 339.

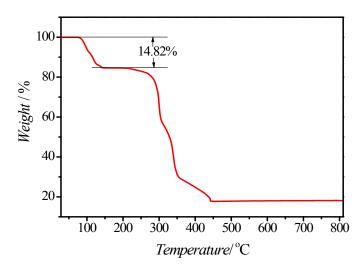


Figure S1. TG curve of 1 under an air atmosphere (temperature range 30 - 800 °C).

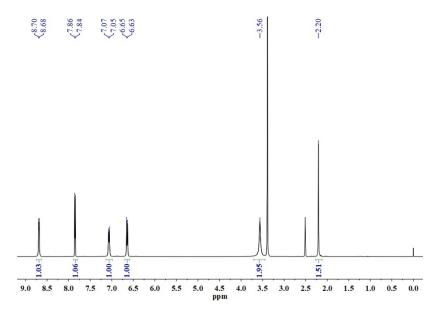
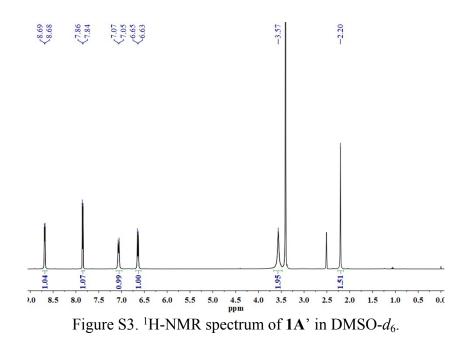



Figure S2. ¹H-NMR spectrum of the completely rehydrated form of **1B** in DMSO-*d*₆.

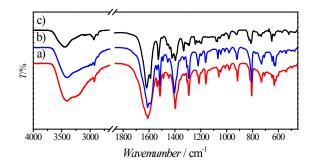


Figure S4. FT-IR spectra of 1 (a), 1A' (b), and 1B (c).

Compound	$v_{\rm as}$ (COO)/cm ⁻¹	v _s (COO)/cm ⁻¹	$\Delta v(COO)/cm^{-1}$
1	1610	1397	213
1A'	1611	1404	207
1B	1613	1417	196

Table S1. The absorption peaks of the COO moieties in 1, 1A' and 1B.

Figure S5. Emission spectra of the ligands H₂MPIDA, dihydrated 4,4'-bipy and anhydrous 4,4'-bipy upon excitation at 320 nm.

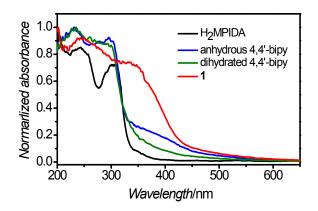


Figure S6. Solid state absorption spectra of **1** and the ligands.

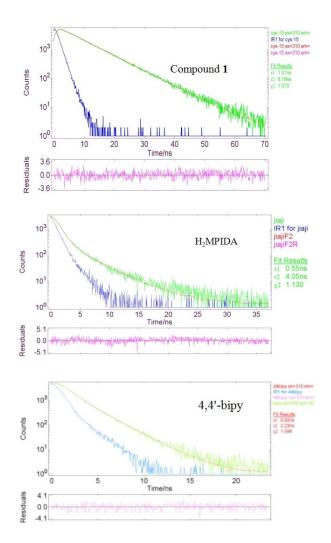


Figure S7. Fluorescence lifetime profiles of **1** and the ligands.

compound	$\lambda_{em}(nm)$	$\tau_{i}(ns)$	Bi	$ au_{average}(ns)$	$\tau_{average} = \frac{B_1 \tau_1^2 + B_2 \tau_2^2}{B_1 \tau_1 + B_2 \tau_2}$
1	567	1.01	0.002271	7.73	$a_{average} = B_1 \tau_1 + B_2 \tau_2$
		8.18	0.04194		
H ₂ MPIDA	360	0.55	0.0949	1.09	
		4.05	0.002373		
4,4-bipy	366	0.82	0.054	1.32	
		2.23	0.011		

Table S2. Details of the average lifetime analysis of **1** and the ligands.

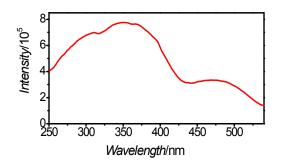


Figure S8. Solid state excitation spectrum of **1** with emission at 567 nm.

Equation S1 and S2. Formation of exciplex.

$$A + D \xrightarrow{hv_1} A^* + D \xrightarrow{} (A - D)^*_{EX}$$
 (Equation S1)
$$A + D \xrightarrow{} (A - D)_{CT} \xrightarrow{hv_2} (A - D)^*_{CT} \xrightarrow{} (A - D)^*_{EX}$$
 (Equation S2)

Where A and D are the two moieties to form exciplex, Ex: exciplex, CT: charge transfer.

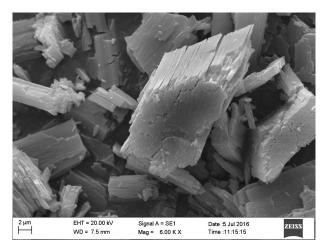


Figure S9. SEM image of 1B.

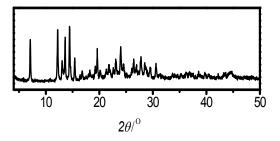


Figure S10. PXRD pattern of 1B-NH₃.

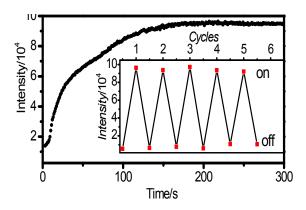


Figure S11. Emission intensity changes of **1B** when exposed to NH₃ with time and repeated cycles (inset) monitored at 570 nm.

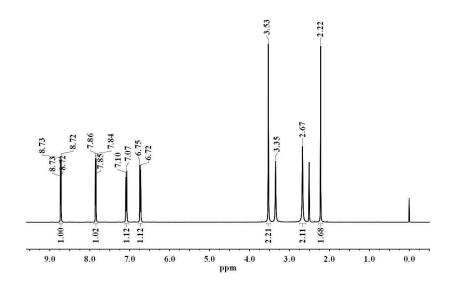


Figure S12. ¹H-NMR spectrum of **1B-NH₃** in DMSO-*d*₆.

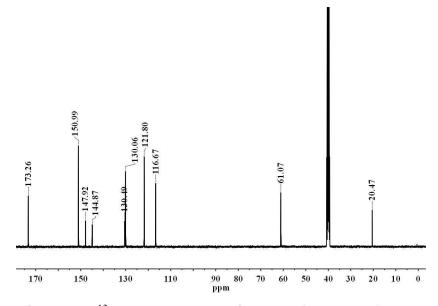


Figure S13. ¹³C-NMR spectrum of **1B-NH₃** in DMSO-*d*₆.

<u>г</u>	
Empirical formula	$C_{32}H_{44}N_4O_{15}Zn_2$
Mr	855.450
crystal System	Monoclinic
space group	<i>C</i> 2/c
<i>a</i> (Å)	26.1429(10)
<i>b</i> (Å)	7.5779(2)
<i>c</i> (Å)	18.5411(7)
α (°)	90
β (°)	97.456(3)
γ (°)	90
$V(Å^3)$	3642.1(2)
Ζ	4
<i>T</i> (K)	291(2)
$Dc (g \cdot cm^{-3})$	1.560
μ (mm ⁻¹)	1.393
F (000)	1776
$\theta_{\max}(^{o})$	26.37
λ (Mo K α)(Å)	0.71073
tot. data	11598
unique data, R _{int}	3715, 0.0309
data [$I > 2 \sigma(I)$]	2815
R	0.0324
R _w	0.0708
S	1.032
CCDC number	822713

Table S3. Crystal data and refinement parameters for 1.

Bond lengths (Å) Bond angles (°)			
	_ 、 /		
Zn1-O4	2.0122(15)	O4-Zn1-O6	97.13(7)
Zn1-O6	2.0200(16)	O4-Zn1-O2	151.76(6)
Zn1-O2	2.0382(14)	O6-Zn1-O2	110.39(7)
Zn1-O5	2.1373(18)	O4-Zn1-O5	90.80(7)
Zn1-N2	2.1428(18)	O6-Zn1-O5	85.71(8)
Zn1-N1	2.4384(18)	O2-Zn1-O5	85.24(7)
		O4-Zn1-N2	95.88(7)
		O6-Zn1-N2	89.27(7)
		O2-Zn1-N2	90.82(6)
		O5-Zn1-N2	172.10(7)
		O4-Zn1-N1	76.13(6)
		O6-Zn1-N1	171.82(8)
		O2-Zn1-N1	75.91(6)
		O5-Zn1-N1	89.72(7)
		N2-Zn1-N1	95.96(7)

Table S4. Selected bond lengths and angles of **1**.