SUPPORTING INFORMATION

Photoluminescent Cu(I) vs Ag(I) complexes: Slowing down emission in Cu(I) complexes by pentacoordinate low-lying excited states

José M. Carbonell-Vilar,^a Elisa Fresta,^b Donatella Armentano,^c Rubén D. Costa,^{b*} Marta Viciano-Chumillas^{a*} and Joan Cano^{a*}

^aInstitut de Ciència Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain

^bIMDEA Materials Institute, Calle Eric Kandel 2, E-28906 Getafe, Madrid, Spain

cUniversidad Autónoma de Madrid, Departamento de Física Aplicada, Calle Francisco Tomás y Valiente, 7, 28049, Madrid, Spain

^dDipartamento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87030 Rende, Cosenza, Italy

FIGURES

Figure S1. ORTEP drawing of $1 \cdot BF_4$. The thermal ellipsoids are drawn at the 30% probability level. Silver, phosphorous, nitrogen, chorine, fluorine, boron, and carbon atoms are depicted by purple, yellow, blue, dark green, green, brown and grey ellipsoids, respectively. Hydrogens are depicted as grey circles. [The two BF₄⁻ (B1–F4 and B1A–F4A) and CH₂Cl₂ entities (C52, Cl53, Cl54 and Cl, Cl1, C52A), statistically distributed on two positions, are presented).

Fig. S2. 1H NMR spectrum of 1 in d₆-dmso at r.t.

Fig. S3. ESI-MS spectrum of 1.

Figure S4. Perspective views of the natural transition orbitals (NTOs) involved in the theoretical electronic excitations of **2**. The isodensity surfaces correspond to a cut-off value of 0.05 e bohr⁻³. Electrons are promoted from the orbital at the left side to the other one at the right side. Label S_i indicates the singlet state reached by the ith electronic excitation.

Figure S5. View of the optimized geometries of the S_1 (blue) and T_1 (yellow) states of **2** (left) and the S_1 (blue) and T_1 (red) states of **2** with the Cu–O bond of the Xantphos ligand (right). The hydrogen atoms are hidden for clarity.

TABLES

 Table S1. Crystal data for 1·BF₄.

	$C_{51}H_{44}AgN_2O_3P_2,$
	$BF_4 \cdot CH_2Cl_2$
	$(1 \cdot BF_4 \cdot DCM)$
Formula weight [gmol ⁻¹]	1074.43
Crystal system	Triclinic
Space group	P-1
<i>a</i> [Å]	10.365(4)
<i>b</i> [Å]	14.192(6)
<i>c</i> [Å]	17.735(6)
α [°]	99.343(19)
β [°]	99.031(19)
γ [°]	98.17(2)
V [Å ³]	2504.4(17)
Z	2
D _{calc} [gcm ⁻³]	1.425
μ [mm ⁻¹]	0.632
Number of collected reflections (unique)	34950(9948)
Number of observed reflections $(I_o > 2\sigma(I_o))$	7260
Internal R factor	0.048
Number of parameters	681
Goodness-of-fit S on F ²	1.033
Largest peak and hole in final difference Fourier map (e $Å^{-3}$)	-0.517 and 0.510
$R_1^{[a]}[I > 2.0\sigma(I)]$	0.0444 (0.714)
$wR_2^{[b]}$ [all data]	0.0999 (0.1117)
T [K]	296
$a R = \sum (F_0 - F_c) / \sum F_0 $. $b WR = \sum (F_0 - F_c)^2 / \frac{1}{2}$	$\sum w F_0 ^2]^{1/2}$

Compound	1·BF₄	2	Optimized 1
Bond lengths			
M1-P1	2.5461(12)	2.2460(10)	2.625
M1-P2	2.4407(11)	2.2513(10)	2.620
M1-N1	2.345(3)	2.073(3)	2.375
M1-N2	2.423(3)	2.023(3)	2.375
M1…O1	3.250(1)	3.198(2)	
P1…P2	4.097	3.843	
Bond angles			
P1-M1-P2	110.48(4)	117.42(4)	107.2
N1-M1-N2	70.43(9)	79.82(12)	70.7
N1-M1-P1	114.14(7)	116.31(9)	119.7
N1-M1-P2	122.07(6)	109.86(9)	120.5
P1-M1-N2	98.32(7)	112.83(9)	117.4
P2-M1-N2	135.68(7)	114.93(9)	118.1

Table S2. Selected bond lengths (Å) and angles (°) for optimized and experimental geometries of the S_0 ground state of the [M(Xantphos)(4,4'-(MeO)_2-2,2'-bipy)]BF₄ [M = Ag (1·BF₄) and Cu (2·BF₄)].

Table S2. C–H···X (X = F, Cl) interactions details (distances [Å] and angles[°]) for compounds $1 \cdot BF_4$.

		TT 4		
Donor–H…Acceptor	D-H	H···A	D···A	D–H···A
Compound 1·BF ₄				
C24–H24…F4	0.93	2.553(1)	3.209(1)	127.86(4)
C46–H46…F1	0.93	2.492(1)	3.418(1)	173.40(6)
C49–H49…F2	0.93	2.427(1)	3.298(1)	156.01(5)
C49–H49…F3	0.93	2.497(1)	3.2311)	135.98(5)
C24–H24…F4A	0.93	2.461(1)	3.334(1)	156.05(6)
C46–H46…F1A	0.93	2.360(1)	3.230(1)	172.20(6)
C49–H49…F2A	0.93	2.566(1)	3.483(1)	168.82(6)
C49–H49…F3A	0.93	2.462(1)	3.036(1)	120.07(5)
C37–H37…Cl1	0.93	3.20	3.788(1)	128.03(7)
C51-H51B····Cl54	0.96	2.920(1)(1)	3.390(1)	111.40(4)
C52-H52A…F3	0.96	2.700(1)	3.639(1)	163.04(4)
C52-H52A…F3A	0.96	2.549(1)	3.210(1)A	111.04(3)

Table S3. Dihedral angle (θ , in degrees) between MN₂ and MP₂ planes for the optimized geometries of **1** and **2** using a solvation model. The values in parentheses correspond to those obtained from the experimental geometries of **1**·BF₄ and **2**·BF₄.

Geometry	S ₀	S ₁	T ₁	Ox	S ₁ '	T ₁ '	Ox'
1	90.0 (75.9)	43.1	45.4	47.7			
2 ae ^{<i>a</i>}	89.9 (86.4)	57.3	58.4	57.9			
2 ae (Cu-O) <i>a, b</i>					80.1	80.0	89.5

2 p ^{<i>a</i>}	89.8 (86.4)	55.8	57.3	57.6			
2 p (Cu–O) ^{<i>a, b</i>}					69.7	77.9	85.9

^{*a*} Set basis all electron (ae) and pseudo (p). ^{*b*} optimized geometry of **2** with an additional Cu–O bond of the Xantphos ligand.

Table S4. Bond lengths of compounds 1 and 2 at the optimized geometries.

Model		S_0^{a}	Ox ^a	S_1^{a}	T_1^{a}
1	a	1.351	1.352	1.356	1.354
	b	1.387	1.384	1.376	1.378
	с	1.404	1.405	1.429	1.427
	d	1.400	1.403	1.379	1.379
	e	1.402	1.397	1.433	1.434
	f	1.350	1.355	1.388	1.394
	g	1.494	1.487	1.422	1.418
	a'	1.344	1.345	1.352	1.350
	b'	1.395	1.392	1.381	1.384
	c'	1.400	1.402	1.427	1.425
	ď	1.403	1.406	1.380	1.381
	e'	1.394	1.389	1.426	1.428
	f	1.358	1.362	1.392	1.397
2ae	a	1.351	1.346	1.352	1.359
	b	1.386	1.390	1.380	1.376
	с	1.405	1.404	1.427	1.430
	d	1.401	1.408	1.382	1.379
	e	1.399	1.383	1.421	1.430
	f	1.353	1.365	1.390	1.397
	g	1.488	1.479	1.422	1.416
	a'	1.344	1.354	1.361	1.350
	b'	1.394	1.383	1.373	1.383
	c'	1.401	1.407	1.430	1.425
	ď	1.404	1.405	1.379	1.383
	e'	1.391	1.391	1.429	1.422
	f	1.361	1.359	1.390	1.396
2p	a	1.352	1.346	1.353	1.360
	b	1.386	1.390	1.380	1.376
	с	1.405	1.404	1.427	1.430
	d	1.401	1.408	1.382	1.379
	e	1.399	1.384	1.421	1.430
	f	1.353	1.364	1.390	1.397
	g	1.489	1.481	1.423	1.417
	a'	1.345	1.354	1.362	1.351
	b'	1.394	1.383	1.373	1.382
	c'	1.401	1.407	1.430	1.426
	ď	1.404	1.405	1.379	1.383
	e'	1.391	1.392	1.429	1.423
	f	1.361	1.359	1.389	1.396

 \overline{a} ae = all electron basis set; p = pseudo basis set.

Compound	λ (solv) ^{<i>a,b</i>}	λ_{exp} ^c	Nature
1	[2] 270.4 (0.131)	280	MLCT (bipy)
	[3] 250.0 (0.156)	250	MLCT (bipy)
	[11] 233.5 (0.265)	< 240	MLCT (bipy + Xantphos)
	[17] 224.7 (0.203)		MLCT (Xantphos)
	[20] 222.8 (0.200)		MLCT (Xantphos)
	[21] 219.6 (0.314)		MLCT (Xantphos)
	[23] 209.3 (0.317)		π - π * (bipy)
2ae	[2] 324.5 (0.144)	372	MLCT (bipy)
	[9] 252.4 (0.148)		$\pi - \pi^* + MLCT$ (bipy)
	[11] 243.5 (0.127)	285	$\pi - \pi^* + MLCT$ (bipy)
	[12] 241.9 (0.072)		MLCT (Xantphos)
	[15] 237.0 (0.155)		MLCT (Xantphos)
	[16] 235.7 (0.111)		MLCT (Xantphos)
2p	[2] 314.4 (0.144)	372	MLCT (bipy)
	[7] 253.3 (0.083)		$\pi - \pi^* + MLCT$ (bipy)
	[8] 251.1 (0.119)	285	π - π * + MLCT (bipy)
	[12] 240.8 (0.190)		MLCT (Xantphos)
	[14] 235.2 (0.137)		MLCT (Xantphos)
	[20] 280.1 (0.112)		MLCT (Xantphos)

Table S5. A selection of experimental and theoretical electronic transitions in the UV-Vis region of 1. Results appears as wavelengths (λ) in nm and oscillator strengths (*f*), respectively.

^{*a*} Number of the electronic excitation (bracket), wavelength (in nm), and oscillator strength ($f \ge 10^4$, parentheses). ^{*b*} Geometries optimized and TDDFT using a solvation model. ^{*c*} Wavelengths (in nm) found from a deconvolution of the experimental spectra.

Table S6. Atomic charges obtained by NBO analysis of compound 1 at the optimized gas geometries.

Charges /Atom	S ₀	S_1	T ₁	Ox
Ag	0.546	0.8222	0.805	0.819
Р	0.783	0.841	0.849	0.899
P'	0.782	0.835	0.849	0.911
Ν	-0.550	-0.553	-0.554	-0.555
N'	-0.559	-0.591	-0.585	-0.573
C1	-0.556	-0.591	-0.588	-0.567
C1'	0.205	0.148	0.136	0.211
C2	0.221	0.147	0.141	0.229
C2'	-0.259	-0.300	-0.303	-0.248
C3	-0.306	-0.343	-0.345	-0.297
C3'	0.369	0.344	0.348	0.387
C4	0.369	0.344	0.346	0.387
C4'	-0.326	-0.377	-0.384	-0.317
C5	-0.279	-0.341	-0.347	-0.270
C5'	0.089	0.082	0.084	0.103

Table S7. Atomic spin densities obtained by NBO analysis of compound 1 at the optimized gas geometries.

S ₀	T_1	Ox
0	0.331	0.273
0	0.106	0.209
0	0.115	0.216
0	0.000	0.000
0	0.352	0.090
0	0.361	0.094
0	0.130	-0.004
0	0.151	-0.004
0	0.114	0.004
0	0.093	0.004
0	0.009	-0.003
0	0.013	-0.003
0	0.156	0.005
0	0.170	0.006
0	-0.080	-0.008
	S ₀ 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccc} S_0 & T_1 \\ \hline 0 & 0.331 \\ 0 & 0.106 \\ 0 & 0.115 \\ 0 & 0.000 \\ 0 & 0.352 \\ 0 & 0.361 \\ 0 & 0.130 \\ 0 & 0.130 \\ 0 & 0.151 \\ 0 & 0.114 \\ 0 & 0.093 \\ 0 & 0.093 \\ 0 & 0.009 \\ 0 & 0.013 \\ 0 & 0.156 \\ 0 & 0.170 \\ 0 & -0.080 \\ \end{array}$

Table S8. Atomic charges obtained by NBO analysis of compound 2 with all electron basis set at the optimized geometries.

Charges	S	S	т	Ov	s '	т,	Ov'
/Atom	50	51	1	Ŭ.	51	11	Ŭ.
Cu	0.808	1.158	1.192	1.179	1.218	1.258	1.430
Р	0.724	0.752	0.750	0.775	0.717	0.710	0.692
P'	0.724	0.754	0.754	0.775	0.741	0.743	0.694
0	-0.559	-0.562	-0.562	-0.563	-0.563	-0.560	-0.524
Ν	-0.616	-0.668	-0.676	-0.630	-0.640	-0.647	-0.674
N'	-0.623	-0.683	-0.693	-0.639	-0.696	-0.708	-0.687
C1	0.203	0.147	0.143	0.214	0.138	0.138	0.217
C1'	0.217	0.148	0.143	0.233	0.145	0.142	0.237
C2	-0.257	-0.299	-0.304	-0.242	-0.291	-0.301	-0.246
C2'	-0.304	-0.340	-0.344	-0.290	-0.337	-0.345	-0.294
C3	0.371	0.347	0.353	0.399	0.336	0.349	0.405
C3'	0.371	0.344	0.347	0.399	0.337	0.347	0.407
C4	-0.326	-0.374	-0.384	-0.315	-0.362	-0.382	-0.307
C4'	-0.279	-0.333	-0.345	-0.267	-0.327	-0.348	-0.259
C5	0.0940	0.086	0.089	0.111	0.071	0.083	0.113
C5'	0.078	0.067	0.070	0.093	0.065	0.077	0.095

Table S9. Atomic spin densities obtained by NBO analysis of compound **2** with all electron basis set at the optimized geometries.

Charges	S	S	т	Ov	S ,	т'	Ov'
/Atom	50	51	11	ŬX.	51	1	Ŭ.
Cu	0	0	0.545	0.531	0	0.588	0.850
Р	0	0	0.064	0.107	0	0.003	-0.003
Р'	0	0	0.070	0.107	0	0.072	-0.003
0	0	0	0.000	0.000	0	0.008	0.014
Ν	0	0	0.291	0.106	0	0.352	0.040
N'	0	0	0.316	0.105	0	0.268	0.040
C1	0	0	0.121	-0.004	0	0.130	0.006
C1'	0	0	0.167	-0.005	0	0.152	0.008
C2	0	0	0.107	0.003	0	0.102	-0.007
C2'	0	0	0.075	0.004	0	0.084	-0.007
C3	0	0	0.014	-0.002	0	0.017	0.012
C3'	0	0	0.031	-0.003	0	0.021	0.012
C4	0	0	0.145	0.005	0	0.144	0.024
C4'	0	0	0.153	0.005	0	0.160	0.026
C5	0	0	-0.070	-0.007	0	-0.074	-0.014
C5'	0	0	-0.070	-0.006	0	-0.074	-0.016

Table S10. Atomic charges obtained by NBO analysis of compound 2 with pseudo basis set at the optimized geometries.

Charges	S	S	0	т	с '	т'	O <i>r</i> [']
/Atom	\mathbf{S}_{0}	5 1	Ux	11	\mathbf{S}_1	11	Ux
Cu	0.373	0.810	0.822	0.799	0.792	0.749	0.725
Р	0.832	0.839	0.871	0.850	0.825	0.834	0.859
Р'	0.831	0.841	0.865	0.850	0.849	0.866	0.882
Ν	-0.550	-0.554	-0.555	-0.555	-0.561	-0.560	-0.531
N'	-0.554	-0.620	-0.585	-0.622	-0.605	-0.588	-0.534
C1	-0.558	-0.632	-0.590	-0.636	-0.635	-0.630	-0.573
C1'	0.207	0.150	0.216	0.147	0.152	0.143	0.219
C2	0.222	0.152	0.236	0.148	0.151	0.148	0.229
C2'	-0.256	-0.296	-0.241	-0.301	-0.295	-0.299	-0.240
C3	-0.302	-0.336	-0.289	-0.340	-0.337	-0.343	-0.289
C3'	0.372	0.347	0.398	0.353	0.346	0.349	0.398
C4	0.372	0.343	0.398	0.348	0.343	0.348	0.3917
C4'	-0.323	-0.369	-0.313	-0.380	-0.368	-0.378	-0.311
C5	-0.277	-0.329	-0.266	-0.342	-0.329	-0.344	-0.266
C5'	0.096	0.088	0.114	0.092	0.089	0.087	0.109

Table S11. Atomic spin densities obtained by NBO analysis of compound 2 with pseudo basis set at the optimized gas geometries.

Charges /Atom	S ₀	\mathbf{S}_1	T ₁	Ox	S ₁ '	T ₁ '	Ox'
Cu	0	0	0.542	0.511	0	0.574	0.570
Р	0	0	0.070	0.119	0	0.006	0.0468
Р'	0	0	0.074	0.115	0	0.083	0.094
Ν	0	0	0.000	0.000	0	0.008	-0.003
N'	0	0	0.286	0.102	0	0.345	0.182
C1	0	0	0.309	0.098	0	0.270	0.045
C1'	0	0	0.123	-0.004	0	0.133	-0.011
C2	0	0	0.169	-0.004	0	0.153	0.000
C2'	0	0	0.103	0.004	0	0.099	0.009
C3	0	0	0.071	0.004	0	0.082	0.000
C3'	0	0	0.018	-0.002	0	0.019	-0.008
C4	0	0	0.035	-0.003	0	0.022	-0.002
C4'	0	0	0.139	0.005	0	0.140	0.011
C5	0	0	0.147	0.005	0	0.157	0.002
C5'	0	0	-0.066	-0.006	0	-0.071	-0.015

Compound	S_0	T ₁	Ox	T ₁ '	Ox'
Zero-point energie	s				
1	0	2.76	5.97		
2 ae	0	2.15	5.49	2.11	7.04
2 p	0	2.31	5.67	2.27	5.61
Free energies					
1	0	2.87	6.09		
2 ae	0	2.21	5.59	2.09	7.09
2 p	0	2.39	5.80	2.31	5.70

Table S12. Zero-point energies (in eV) and free energies at 298 K (in eV) of the different states of **1** and **2** with all electron basis set (ae) and with pseudo basis set (p) in the optimized geometry.