Iridium(III) Polypyridine Complexes with a Disulfide Linker as Biological Sensors and

Cytotoxic Agents

Steve Po-Yam Li, ^a Justin Shum ^a and Kenneth Kam-Wing Lo *^{abc}

Electronic Supplementary Information (ESI)

Scheme S1	Synthetic route of bpy-SS-PEG	S3
Scheme S2	Synthetic route of bpy-SS-py	S4
Scheme S3	Structures of complexes 3-Re and 3-Ir	S5
Scheme S4	Corresponding sulfhydryl complexes formed after disulfide cleavage of all the complexes with GSH	S 6
Table S1	Electronic absorption spectral data of complexes 1a–c , 2a–c , 3 , the donor complex 3-Re , and the acceptor complex 3-Ir in CH ₃ CN at 298 K	S7
Table S2	Photophysical data of complexes 1a–c , 2a–c , 3 , the donor complex 3-Re , and the acceptor complex 3-Ir in degassed CH ₃ CN at 298 K and in alcohol glass at 77 K	S8, S9
Table S3	ESI-MS data for complexes 1a , b and 2a , b (10 μ M) upon incubation with GSH (500 μ M) in PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K for 120 min	S10
Table S4	Emission wavelengths, I_{517}/I_{655} ratios, and emission lifetimes of solutions containing complex 3 (10 μ M) alone, complex 3 (10 μ M) and GSH (200 μ M), and 3-Re (10 μ M) and 3-Ir (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, ν/ν), incubated at 298 K for 120 min. $\lambda_{ex} = 355$ nm	S11
Table S5	ESI-MS data for complex 3 (10 μ M) upon incubation with GSH (200 μ M) in PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K for 120 min	S12
Table S6	The k_{obs} values for complex 3 (10 μ M) upon reaction with various concentrations of GSH (200, 600, 700, and 800 μ M) in PBS (pH = 7.2)/MeOH (7:3, v/v) at 298 K	S13
Figure S1	Emission spectra of complex $1a$ in CH ₃ CN at 298 K and low-temperature glass at 77 K	S14
Figure S2	Emission spectra of complex $1b$ in $\rm CH_3CN$ at 298 K and low-temperature glass at 77 K	S14

Figure S3	Emission spectra of complex 1c in CH_3CN at 298 K and low-temperature glass at 77 K	S15
Figure S4	Emission spectra of complex $2a$ in CH ₃ CN at 298 K and low-temperature glass at 77 K	S15
Figure S5	Emission spectra of complex $2b$ in CH ₃ CN at 298 K and low-temperature glass at 77 K	S16
Figure S6	Emission spectra of complex $2c$ in CH ₃ CN at 298 K and low-temperature glass at 77 K	S16
Figure S7	ESI-mass spectra of complex 3 (10 μ M) (a) incubated with or (b) without GSH (200 μ M) in PBS (pH = 7.2)/MeOH (7:3, v/v) at 298 K for 120 min	S17
Figure S8	Emission spectral traces of complex 3 (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, v/v) at 298 K in the presence of 1250 μ M GSH. Excitation wavelength = 355 nm	S18
Figure S9	Time-dependent emission spectral traces (0 – 90 min) of complex 3 (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K in the presence of 200 μ M GSH	S19
Figure S10	Time-dependent emission spectral traces (0 – 90 min) of complex 3 (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K in the presence of 600 μ M GSH	S19
Figure S11	Time-dependent emission spectral traces (0 – 90 min) of complex 3 (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K in the presence of 700 μ M GSH	S20
Figure S12	Time-dependent emission spectral traces $(0 - 60 \text{ min})$ of complex 3 $(10 \ \mu\text{M})$ in aerated PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K in the presence of 800 μ M GSH	S20
Figure S13	<i>Pseudo</i> first-order kinetics for the reactions of complex 3 with different concentrations of GSH in aerated PBS (pH = 7.2)/MeOH (7:3, v/v) at 298 K	S21
Figure S14	Cytotoxicity of complexes 1a (a), 1b (b), and 1c (c) toward GSH- pretreated (5 mM, 37°C, 2 h, red) and untreated (black) HeLa cells upon incubation at 37°C for 16 h.	S22

Scheme S1 Synthetic route of bpy-SS-PEG

bpy-SS-PEG

Scheme S2 Synthetic route of bpy-SS-py.

bpy-SS-py

Scheme S3 Structures of complexes 3-Re and 3-Ir.

Scheme S4 Corresponding sulfhydryl complexes formed after disulfide cleavage of all the complexes with GSH

Table S1 Electronic absorption spectral data of complexes 1a–c, 2a–c, 3, the donor complex
3-Re, and the acceptor complex 3-Ir in CH₃CN at 298 K.

complex	$\lambda_{abs}/nm \ (\varepsilon/dm^3 \ mol^{-1} \ cm^{-1})$
1a	266 (52,455), 290 (47,715), 350 (26,330), 369 sh (23,220), 480 (4,260)
1b	265 (56,545), 290 (50,805), 350 (27,745), 364 (26,320), 477 (4,475)
1c	263 (32,230), 290 (29,705), 319 sh (14,845), 353 sh (16,485), 435 (3,430)
2a	272 (51,575), 337 (21,875), 352 sh (18,285), 442 sh (4,775)
2b	265 (55,960), 282 sh (31,590), 307 sh (27,075), 336 (24,865), 351 sh
	(21,315), 435 (6,200)
2c	263 (50,090), 284 (45,235), 314 sh (24,405) 336 sh (23,125), 435 (6,595)
3	270 (46,785), 280 (48,080), 345 (19,180), 366 sh (17,245), 470 (2,905)
3-Re	250 (32,945), 281 (37,275), 370 sh (3,655)
3-Ir	267 (48,210), 291 (44,170), 349 (24,100), 368 sh (21,640), 472 sh (4,065)

Table S2	Photophysical	data of	complexes	1a–c,	2а–с,	3 , the	donor	complex	3-Re ,	and	the
acceptor c	omplex 3-Ir in	degasse	d CH ₃ CN a	t 298 I	K and	in alco	ohol gla	uss at 77 k	ζ.		

complex	medium (T/K)	$\lambda_{\rm em}/{\rm nm}$	$ au_{ m o}^{ m a}/\mu{ m s}$	$arPsi_{ m em}$
1a	CH ₃ CN (298)	642	0.60	0.097
	glass ^b (77)	597, 643 sh		
1b	CH ₃ CN (298)	641	0.63	0.082
	glass ^b (77)	596, 647 sh		
1c	CH ₃ CN (298)	641	0.73	0.10
	glass ^b (77)	599, 648 sh		
2a	CH ₃ CN (298)	556, 596 sh	2.77	0.51
	glass ^b (77)	544 (max), 584		
2b	CH ₃ CN (298)	556, 594 sh	2.69	0.48
	glass ^b (77)	541 (max), 582, 634 sh		
2c	CH ₃ CN (298)	559, 596 sh	0.84	0.16
	glass ^b (77)	538 (max), 580, 631 sh		
3	CH ₃ CN (298)	517 sh, 640	0.60	0.054 ^c
	glass ^b (77)	466, 498, 598 (max), 646		
3-Re	CH ₃ CN (298)	515	7.56	0.69 ^c
	glass ^b (77)	464 (max), 496, 533 sh		
3-Ir	CH ₃ CN (298)	641	0.55	0.040 ^c
	glass ^b (77)	597 (max), 644		
[Ir(ppy)2(bpy)](PF6) ^d	CH ₃ CN (298)	583	0.269	0.071

^a The lifetimes were measured at the emission maxima.

^b EtOH/MeOH (4:1, *v*/*v*).

^c The emission quantum yields were determined using [Re(phen)(CO)₃(pyridine)](CF₃SO₃) ($\Phi_{em} = 0.18$ in degassed CH₃CN, $\lambda_{ex} = 355$ nm) as a reference.

^d Data taken from: M. S. Lowry, W. R. Hudson, R. A. Pascal and S. Bernhard, *J. Am. Chem. Soc.*, 2009, **126**, 14129.

Table S3 ESI-MS data for complexes **1a**,**b** and **2a**,**b** (10 μ M) upon incubation with GSH (500 μ M) in PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K for 120 min.

complex	formulae [Ir(N^C) ₂ (bpy-SH)] ⁺	mass calculated	mass found
1a	IrC49H42N5O6S	1020.2	1020.6
1b	$IrC_{49}H_{42}N_5O_6S$	1020.2	1019.9
2a	$IrC_{45}H_{38}N_5O_2S$	904.2	904.6
2b	IrC45H38N5O2S	904.2	904.5

Table S4 Emission wavelengths, I_{517}/I_{655} ratios, and emission lifetimes of solutions containing complex **3** (10 μ M) alone, complex **3** (10 μ M) and GSH (200 μ M), and **3-Re** (10 μ M) and **3-Ir** (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, v/v), incubated at 298 K for 120 min. $\lambda_{ex} = 355$ nm.

	$\lambda_{ m em}/ m nm$	I ₅₁₇ /I ₆₅₅	τ (517 nm)/ μ s	τ (655 nm)/ μ s
3	517, 655 (max)	0.21	n.d. ^a	0.042
3 + GSH	517, 655 sh	3.56	0.82	0.034
3-Re + 3-Ir	516, 655 sh	5.60	0.92	0.025

^a The emission was too weak for accurate lifetime measurement.

Table S5 ESI-MS data for complex **3** (10 μ M) upon incubation with GSH (200 μ M) in PBS (pH = 7.2)/MeOH (7:3, v/v) at 298 K for 120 min.

suggested fragment	formulae	m/z calculated	m/z found
[Re(Me ₄ -Phen)(CO) ₃] ⁺	$ReC_{19}H_{16}N_2O_3$	507.1	507.3
$[\text{Re}(\text{Me}_4\text{-}\text{Phen})(\text{CO})_4]^+$	$ReC_{20}H_{16}N_2O_4$	535.1	535.3
[Re(Me ₄ -Phen)(CO) ₃ (py- SH)] ⁺	ReC ₂₈ H ₂₈ N ₄ O ₅ S	719.1	717.9
[Ir(pqe) ₂ (bpy-SS-py)Re(Me ₄ - phen)(CO) ₃] ²⁺	IrReC77H67N9O11S2	868.9	869.2
$[Ir(pqe)_2(bpy-SH)]^+$	$IrC_{49}H_{41}N_5O_6S$	1020.2	1020.5
[Ir(pqe) ₂ (bpy-SS-py)] ⁺	$IrC_{58}H_{51}N_7O_8S_2$	1230.3	1231.4

Table S6 The k_{obs} values for complex **3** (10 μ M) upon reaction with various concentrations of GSH (200, 600, 700, and 800 μ M) in PBS (pH = 7.2)/MeOH (7:3, v/v) at 298 K.

	1
concentration of GSH/ μ M	$k_{\rm obs}/{\rm ms}^{-1}$
•••	0.102 + 0.000
200	0.102 ± 0.009
<u>(00</u>	0.141 + 0.000
000	0.141 ± 0.009
700	0.151 ± 0.010
700	0.151 ± 0.010
800	0.159 ± 0.004

Figure S1 Emission spectra of complex **1a** in CH₃CN (solid) at 298 K and low-temperature glass (dashed) at 77 K.

Figure S2 Emission spectra of complex **1b** in CH₃CN (solid) at 298 K and low-temperature glass (dashed) at 77 K.

Figure S3 Emission spectra of complex **1c** in CH₃CN (solid) at 298 K and low-temperature glass (dashed) at 77 K.

Figure 4 Emission spectra of complex **2a** in CH₃CN (solid) at 298 K and low-temperature glass (dashed) at 77 K.

Figure S5 Emission spectra of complex **2b** in CH₃CN (solid) at 298 K and low-temperature glass (dashed) at 77 K.

Figure S6 Emission spectra of complex **2c** in CH₃CN (solid) at 298 K and low-temperature glass (dashed) at 77 K.

Figure S7 ESI-mass spectra of complex 3 (10 μ M) (**a**) incubated with or (**b**) without GSH (200 μ M) in PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K for 120 min.

(**a**)

(b)

Figure S8 Emission spectral traces of complex **3** (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, v/v) at 298 K in the presence of 1250 μ M GSH. The solution was allowed to incubate for 1 (solid), 20 (dashed), and 90 (dotted) min before an emission measurement. Excitation wavelength = 355 nm.

Figure S9 Time-dependent emission spectral traces (0 – 90 min) of complex **3** (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K in the presence of 200 μ M GSH.

Figure S10 Time-dependent emission spectral traces (0 – 90 min) of complex **3** (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K in the presence of 600 μ M GSH.

Figure S11 Time-dependent emission spectral traces (0 – 90 min) of complex **3** (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K in the presence of 700 μ M GSH.

Figure S12 Time-dependent emission spectral traces (0 – 60 min) of complex **3** (10 μ M) in aerated PBS (pH = 7.2)/MeOH (7:3, ν/ν) at 298 K in the presence of 800 μ M GSH.

Figure S13 *Pseudo* first-order kinetics for the reactions of complex **3** with different concentrations of GSH in aerated PBS (pH = 7.2)/MeOH (7:3, v/v) at 298 K. The slope of the plot corresponds to the k_2 of the reaction ($R^2 = 0.999$).

Figure S14 Cytotoxicity of complexes **1a** (a), **1b** (b), and **1c** (c) toward GSH-pretreated (5 mM, 37°C, 2 h, red) and untreated (black) HeLa cells upon incubation at 37°C for 16 h.

