Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting information for:

Isolation of chloride- and hydride-bridged tri-iron and - zinc clusters in a tris(β -oxo- δ -diimine) cyclophane ligand

Dae Ho Hong^a, Brian Knight^a, Vincent J. Catalano^b and Leslie J. Murray^{*a}

^aDepartment of Chemistry, Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States ^bDepartment of Chemistry, University of Nevada, Reno, Nevada 89557, United States

Table of Contents

1.	Physical Measurements
2.	References14

Table of Figures

Figure S1. ¹ H NMR spectrum (CDCl ₃ , 300 MHz) of H ₆ L	3			
Figure S2. Infrared spectrum of H ₆ L	3			
Figure S3. ¹ H NMR spectrum (C ₆ D ₆ , 300 MHz) of H ₆ L+3LDA	4			
Figure S4. Infrared spectrum of H ₆ L+3LDA	4			
Figure S5. ¹ H NMR spectrum (C ₆ D ₆ , 300 MHz) of H ₆ L+6LDA	5			
Figure S6. Infrared spectrum of H ₆ L+6LDA	5			
Figure S7. Paramagnetic ¹ H NMR spectrum (CDCl ₃ , 500 MHz) of 1	6			
Figure S8. Infrared spectrum of 1	6			
Figure S9. ¹ H NMR spectrum (CDCl ₃ , 500 MHz) of 2	7			
Figure S10. Infrared spectrum of 2	.7			
Figure S11. Fe–Fe bond length plotted versus $sin(\theta/2)$, where θ is the angle of Fe–Cl–Fe. The slope				
represents twice the bond length of Fe–(µ-Cl)	8			
Figure S12. Paramagnetic ¹ H NMR spectrum (C ₆ D ₆ , 500 MHz) of 3	9			
Figure S13. Infrared spectrum of 3	9			
Figure S14. ¹ H NMR spectrum (C ₆ D ₆ , 500 MHz) of 4	10			
Figure S15. Infrared spectrum of 4	10			
Figure S16. Cyclic voltammograms of 1 (0.87 mM) in THF using 0.30 M [Bu ₄ N]PF ₆ as a supporting				
electrolyte. Ferrocene (1.1mM) was used as internal standard. Electrodes printed on a chip was				
used. Working electrode: Pt; reference electrode: Ag/AgCl; counter electrode: Pt; scan rate: 100-				
500 mV/s	11			
Figure S17. Cyclic voltammograms of 3 (0.87 mM) in THF using 0.30 M [Bu ₄ N]PF ₆ as a supporting				
electrolyte. Ferrocene (1.1mM) was used as internal standard. Electrodes printed on a chip was				

used. Working electrode: Pt; reference electrode: Ag/AgCl; counter electrode: Pt; scan rate: 100-		
500 mV/s	11	
Figure S18. ¹ H NMR spectrum (C_6D_6 , 500 MHz) of 3 +H ₂ O	12	
Figure S19. Infrared spectrum of 3 +H ₂ O	12	

Table 1.	Crystal data and structure refinement for	113
----------	---	-----

1. Physical Measurements

Figure S1. ¹H NMR spectrum (CDCl₃, 300 MHz) of H₆L

Figure S2. Infrared spectrum of H₆L

Figure S3. ¹H NMR spectrum (C₆D₆, 300 MHz) of H₆L+3LDA

Figure S4. Infrared spectrum of H₆L+3LDA

Figure S5. ¹H NMR spectrum (C₆D₆, 300 MHz) of H₆L+6LDA

Figure S6. Infrared spectrum of H₆L+6LDA

Figure S7. Paramagnetic ¹H NMR spectrum (CDCl₃, 500 MHz) of 1

Figure S8. Infrared spectrum of 1

Figure S9. ¹H NMR spectrum (CDCl₃, 500 MHz) of 2

Figure S10. Infrared spectrum of 2

Figure S11. Fe–Fe bond length plotted versus $\sin(\theta/2)$, where θ is the angle of Fe–Cl–Fe. The straight line calculated from $d_{Fe-Fe} = 4.783 \sin(\theta/2)$ Å with R²=0.99976. The slope represents twice the bond length of Fe–(µ-Cl).

Figure S12. Paramagnetic ¹H NMR spectrum (C₆D₆, 500 MHz) of 3

Figure S13. Infrared spectrum of 3

Figure S14. ¹H NMR spectrum (C₆D₆, 500 MHz) of 4

Figure S15. Infrared spectrum of 4

Figure S16. Cyclic voltammograms of 1 (0.87 mM) in THF using 0.30 M [Bu_4N]PF₆ as a supporting electrolyte. Ferrocene (1.1mM) was used as internal standard. Electrodes printed on a chip was used. Working electrode: Pt; reference electrode: Ag/AgCl; counter electrode: Pt; scan rate: 100–500 mV/s.

Figure S17. Cyclic voltammograms of **3** (0.87 mM) in THF using 0.30 M [Bu₄N]PF₆ as a supporting electrolyte. Ferrocene (1.1mM) was used as internal standard. Electrodes printed on a chip was used. Working electrode: Pt; reference electrode: Ag/AgCl; counter electrode: Pt; scan rate: 100–500 mV/s.

Figure S18. ¹H NMR spectrum (C_6D_6 , 500 MHz) of 3+H₂O

Figure S19. Infrared spectrum of $3+H_2O$

Table 1. Crystal data and structure refinement for 1.

Empirical formula	C72 H90 Cl3 Fe3 N6 O3		
Formula weight	1361.39		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /n		
Unit cell dimensions	a = 12.9148(13) Å	α= 90°.	
	b = 22.857(2) Å	β= 98.891(2)°.	
	c = 23.150(2) Å	$\gamma = 90^{\circ}$.	
Volume	6751.9(12) Å ³		
Ζ	4		
Density (calculated)	1.339 Mg/m ³		
Absorption coefficient	0.806 mm ⁻¹		
F(000)	2868		
Crystal size	0.469 x 0.036 x 0.024 mm ³		
Theta range for data collection	1.259 to 24.999°.		
Index ranges	-15<=h<=15, -27<=k<=27, -27<=l<=27		
Reflections collected	66004		
Independent reflections	11889 [R(int) = 0.1954]		
Completeness to theta = 24.999°	100.0 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	11889 / 0 / 827		
Goodness-of-fit on F^2	1.012		
Final R indices [I>2sigma(I)]	R1 = 0.0829, $wR2 = 0.1434$		
R indices (all data)	R1 = 0.1764, $wR2 = 0.1646$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.469 and -0.580 e.Å ⁻³		

2. References

(1) Guillet, G. L.; Sloane, F. T.; Ermert, D. M.; Calkins, M. W.; Peprah, M. K.; Knowles, E. S.; Čižmár, E.; Abboud, K. A.; Meisel, M. W.; Murray, L. J. Preorganized Assembly of Three Iron(Ii) or Manganese(Ii) β -Diketiminate Complexes Using a Cyclophane Ligand. *Chem. Commun.* **2013**, *49* (59), 6635 DOI: 10.1039/c3cc43395a.

(2) Lee, Y.; Jeon, I.-R.; Abboud, K. A.; García-Serres, R.; Shearer, J.; Murray, L. J. A [3Fe–3S] ³⁺ Cluster with Exclusively μ -Sulfide Donors. *Chem. Commun.* **2016**, *52* (6), 1174–1177 DOI: 10.1039/C5CC07813J.