Electronic Supplementary Information

Novel mono- and bimetallic organotin(IV) compounds as potential linkers for coordination polymers⁺

Adrian-Alexandru Someşan,^a Ioana Barbul, Sabina Mădălina Vieriu,^a Richard A. Varga*^a and Cristian Silvestru^a

^{a.} Departamentul de Chimie, Centrul de Chimie Supramoleculară Organică şi Organometalică (CCSOOM), Facultatea de Chimie şi Inginerie Chimică, Universitatea Babeş-Bolyai, RO-400028, Cluj-Napoca, Romania. E-mail: <u>richy@chem.ubbcluj.ro</u>; Fax: (+40) 264-590818; Tel: (+40) 264-593833

Content

Numbering schemes for NMR resonance assignments	S3
¹ H and ¹³ C NMR spectrum of 1	S4
¹ H and ¹³ C NMR spectrum of 2	S5
¹ H and ¹³ C NMR spectrum of 3	S6
¹ H and ¹¹⁹ Sn NMR spectrum of 4	S7
¹ H and ¹¹⁹ Sn NMR spectrum of 5	S8
¹ H NMR spectrum of 6	S9
¹ H and ¹³ C NMR spectrum of 7	S10
¹ H and ¹³ C NMR spectrum of 8	S11
¹¹⁹ Sn NMR stacked spectra of 1-3 , 7 and 8	S12
X-ray crystal data and structure refinement for compounds 1–3	S13
X-ray crystal data and structure refinement for compounds 4–6 and 8	S14
X-ray crystal data and structure refinement for compounds 2b , 3'b and 3''b	S15
Molecular structure of 1 and dimer association in 1	S16
Layer association and view along a axis of the layered structure in the crystal of 1	S17
Packing of 1 along the <i>a</i> , <i>b</i> and <i>c</i> axis	S18
Molecular structure of the two independent molecules in the crystal of 2	S19
View along <i>a</i> axis in the crystal packing of 2	S20
View along b, c and a axis in the crystal packing of 2	S21
Molecular structure of the two independent molecules in the crystal of 3 ' and 3 ''	S22
View of the intermolecular contacts in the crystal of 4	S23
Packing of 4 along <i>c</i> axis showing the 3D architecture based on the zig-zag layer	S24
Molecular structure of 5, and view of a layer in the crystal of 5	S25
Packing of 5 along the <i>a</i> , <i>b</i> and <i>c</i> axis	S26
View of the chain-like polymer in the crystal of 6	S27
Packing of 6 along the <i>a</i> , <i>b</i> and <i>c</i> axis in crystal	S28
View of the dimer association and view of the double layer in the crystal of 8	S29

Numbering schemes for NMR resonance assignments

Figure S1. ¹H NMR (CDCl₃, 20 °C) spectrum of $[2-{(CH_2O)_2CH}C_6H_4]Me_2SnCl (1)$.

Figure S2. ¹³C NMR (CDCl₃, 20 °C) spectrum of $[2-{(CH_2O)_2CH}C_6H_4]Me_2SnCl (1)$.

Figure S3. ¹H NMR (CDCl₃, 20 °C) spectrum of $[2-(O=CH)C_6H_4]Me_2SnCl (2)$.

Figure S4. ${}^{13}C$ NMR (CDCl₃, 20 °C) spectrum of [2-(O=CH)C₆H₄]Me₂SnCl (2).

Figure S5. ¹H NMR (CDCl₃, 20 °C) spectrum of $[2-(O=CH)C_6H_4]Me_2SnNCS$ (3).

Figure S6. ¹³C NMR (CDCl₃, 20 °C) spectrum of $[2-(O=CH)C_6H_4]Me_2SnNCS$ (3).

160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm)

Figure S8. ¹¹⁹Sn NMR (DMSO-d₆, 20 °C) spectrum of ClSnMe₂[2-C₆H₄(4-CH=N-1,1'-C₆H₄C₆H₄-4'-N=CH)-2'-C₆H₄]Me₂SnCl (4).

 $2'-C_6H_4$]Me₂SnCl (5).

 $C_6H_4(CH=NCH_2CH_2N=CH)-2'-C_6H_4]Me_2SnCl (5).$

Figure S16. ¹¹⁹Sn NMR (CDCl₃, 20 °C) stacked spectra of 1 (spectrum 1), 2 (spectrum 2), 3 (spectrum 3), 7 (spectrum 4) and 8 (spectrum 5).

	1	2	3'	3"
Empirical formula	C ₁₁ H ₁₅ ClO ₂ Sn	C ₉ H ₁₁ ClOSn	C ₁₀ H ₁₁ NOSSn	C ₁₀ H ₁₁ NOSSn
Formula weight	333.37	289.34	311.95	311.95
Temperature (K)	297(2)	297(2)	297(2)	297(2)
Crystal system	Monoclinic	Orthorhombic	Triclinic	Monoclinic
Space group	$P2_1/n$	Pbca	<i>P</i> -1	I2/m
<i>a</i> (Å)	9.471(3)	12.485(2)	7.3830(16)	13.670(3)
b (Å)	9.488(3)	15.563(3)	11.922(3)	7.4330(15)
<i>c</i> (Å)	15.221(5)	23.473(4)	15.542(3)	24.401(5)
α (°)	90	90	68.185(4)	90
β (°)	106.228(6)	90	80.788(4)	97.77(3)
γ (°)	90	90	81.019(4)	90
Volume (Å ³)	1313.4(8)	4560.7(13)	1246.8(5)	2456.6(9)
Ζ	4	16	4	8
D_{calc} (g cm ⁻³)	1.686	1.685	1.662	1.687
Absorption coefficient (mm ⁻¹)	2.128	2.432	2.187	2.220
<i>F</i> (000)	656	2240	608	1216
Crystal size (mm)	0.29x0.27x0.23	0.30x0.25x0.23	0.28x0.25x0.10	0.33x0.31x0.30
θ range for data collection (°)	2.283 to 25.007	1.735 to 25.007	1.420 to 25.015	1.621 to 25.003
Reflections collected	9229	41303	11889	11627
Independent reflections	2319	4025	4378	2334
	$[R_{int} = 0.0321]$	$[R_{int} = 0.0435]$	$[R_{int} = 0.0521]$	$[R_{int} = 0.0319]$
Absorption correction	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹
Data / restraints / parameters	2319 / 0 / 138	4025 / 0 / 221	4378 / 0 / 257	2334 / 0 / 165
Goodness-of-fit on F^2	1.064	1.284	0.973	1.081
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0411$	$R_1 = 0.0503$	$R_1 = 0.0443$	$R_1 = 0.0330$
	$wR_2 = 0.1007$	$wR_2 = 0.0973$	$wR_2 = 0.0835$	$wR_2 = 0.0755$
R indices (all data)	$R_1 = 0.0520$	$R_1 = 0.0566$	$R_1 = 0.0725$	$R_1 = 0.0393$
	$wR_2 = 0.1069$	$wR_2 = 0.1000$	$wR_2 = 0.0934$	$wR_2 = 0.0787$
Largest difference peak and hole (e $Å^{-3}$)	0.90 and -0.70	0.56 and -1.05	0.51 and -0.55	0.52 and -0.40
CCDC No.	1860608	1860615	1860609	1860614

Table S1.X-ray crystal data and structure refinement for compounds 1–3.

¹G. M. Sheldrick, *SADABS, Program for area detector adsorption correction*, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.

	4	5	6	8
Empirical formula	$C_{30}H_{30}Cl_2N_2Sn_2$	$C_{20}H_{26}Cl_2N_2Sn_2$	$C_{22}H_{26}N_4S_2Sn_2$	C ₆₀ H ₄₅ Cl ₂ N ₅ O ₃ SnZn
Formula weight	726.84	608.71	647.97	1138.97
Temperature (K)	297(2)	297(2)	297(2)	200(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_{1}/n$	C2/c	P21/n
<i>a</i> (Å)	7.340(3)	10.681(2)	12.5737(18)	21.938(4)
<i>b</i> (Å)	12.824(5)	9.7590(19)	18.303(3)	11.1466(18)
<i>c</i> (Å)	15.719(5)	11.374(2)	12.8154(18)	21.982(4)
α (°)	90	90	90	90
β(°)	96.371(6)	106.171(3)	92.033(3)	95.914(3)
γ (°)	90	90	90	90
Volume (Å ³)	1470.5(9)	1138.6(4)	2947.5(7)	5346.8(15)
Ζ	2	2	4	4
D_{calc} (g cm ⁻³)	1.642	1.758	1.460	1.415
Absorption coefficient (mm ⁻¹)	1.901	2.435	1.850	1.065
<i>F</i> (000)	716	588	1272	2312
Crystal size (mm)	0.21x0.19x0.18	0.15x0.12x0.05	0.31x0.28x0.26	0.40x0.25x0.20
θ range for data collection (°)	2.608 to 25.010	1.864 to 25.005	2.492 to 25.006	1.866 to 25.000
Reflections collected	12709	10741	13802	26981
Independent reflections	2565	2007	2595	9376
	$[R_{int} = 0.0451]$	$[R_{int} = 0.0570]$	$[R_{int} = 0.0431]$	$[R_{int} = 0.0910]$
Absorption correction	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹	Multi-Scan ¹
Data / restraints / parameters	2565 / 0 / 165	2007 / 0 / 121	2595 / 0 / 139	9376 / 0 / 652
Goodness-of-fit on F^2	1.192	1.181	1.051	0.785
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0472$	$R_1 = 0.0600$	$R_1 = 0.0385$	$R_1 = 0.0656$
	$wR_2 = 0.1038$	$wR_2 = 0.1567$	$wR_2 = 0.0812$	$wR_2 = 0.1576$
<i>R</i> indices (all data)	$R_1 = 0.0564$	$R_1 = 0.0625$	$R_1 = 0.0488$	$R_I = 0.1096$
	$wR_2 = 0.1082$	$wR_2 = 0.1587$	$wR_2 = 0.0857$	$wR_2 = 0.1902$
Largest difference peak and	0.63 and -0.55	3.26 and -0.77	0.53 and -0.29	0.71 and -0.87
hole (e Å ⁻³)				
CCDC No.	1860611	1860610	1860612	1860613

Table 52 . A-lay crystal data and subclute termement for compounds 4-0 and	Table S2.	X-ray crystal da	ta and structure	e refinement for	compounds 4-6 an	d 8.
---	-----------	------------------	------------------	------------------	------------------	------

¹G. M. Sheldrick, *SADABS, Program for area detector adsorption correction*, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.

2b		3′b		3‴b ^a	
Sn(2)–C(10)	2.141(6)	Sn(2)-C(11)	2.136(6)	Sn(2)–C(11)	2.122(6)
Sn(2)-C(17)	2.107(7)	Sn(2)-C(18)	2.111(6)	Sn(2)-C(18)	2.107(4)
Sn(2)-C(18)	2.113(7)	Sn(2)-C(19)	2.107(5)	$Sn(2)-C(18a)^{i}$	2.107(4)
Sn(2)– $Cl(2)$	2.4418(19)				
Sn(2)-O(2)	2.491(4)	Sn(2)-O(1)	2.451(4)	Sn(2)-O(2)	2.442(4)
		Sn(2) - N(2)	2.180(6)	Sn(2) - N(2)	2.161(6)
C(16)–O(2)	1.215(7)	C(17)–O(2)	1.217(7)	C(17)–O(2)	1.206(8)
		C(20)–N(2)	1.142(7)	C(19)–N(2)	1.162(8)
		C(20)–S(2)	1.586(7)	C(19) - S(2)	1.594(7)
Cl(2)-Sn(2)-O(2)	170.33(12)	N(2)-Sn(2)-O(2)	169.27(18)	N(2)-Sn(2)-O(2)	169.20(19)
C(10)-Sn(2)-C(17)	119.8(3)	C(11)-Sn(2)-C(18)	118.0(2)	C(11)-Sn(2)-C(18)	118.78(12)
C(10)-Sn(2)-C(18)	113.5(3)	C(11)-Sn(2)-C(19)	117.5(2)	$C(11)-Sn(2)-C(18a)^{i}$	118.78(12)
C(17)-Sn(2)-C(18)	120.7(3)	C(18)-Sn(2)-C(19)	121.1(2)	$C(18)-Sn(2)-C(18a)^{i}$	117.7(2)
Cl(2)-Sn(2)-C(10)	96.86(16)	N(2)-Sn(2)-C(1)	94.8(2)	N(2)-Sn(2)-C(11)	95.7(2)
Cl(2)-Sn(2)-C(17)	98.4(3)	N(2)-Sn(2)-C(18)	96.7(2)	N(2)-Sn(2)-C(18)	98.04(15)
Cl(2)-Sn(2)-C(18)	99.3(3)	N(2)-Sn(2)-C(19)	97.0(2)	$N(2)-Sn(2)-C(18a)^{i}$	98.04(15)
O(2)-Sn(2)-C(10)	73.47(18)	O(2)-Sn(2)-C(11)	74.42(19)	O(2)-Sn(2)-C(11)	73.52(19)
O(2)-Sn(2)-C(17)	87.0(3)	O(2)-Sn(2)-C(18)	88.4(2)	O(2)-Sn(2)-C(18)	87.47(13)
O(2)-Sn(2)-C(18)	84.7(3)	O(2)-Sn(2)-C(19)	88.3(2)	$O(2)-Sn(2)-C(18a)^{i}$	87.47(13)
C(11)-C(16)-O(2)	122.7(6)	C(12)-C(17)-O(2)	124.4(6)	C(12)-C(17)-O(2)	124.5(6)
C(16)-O(2)-Sn(2)	108.3(4)	C(17)–O(2)–Sn(2)	108.2(4)	C(17)–O(2)–Sn(2)	108.2(4)
		N(2)-C(20)-S(2)	178.8(7)	N(2)-C(19)-S(2)	177.7(6)
		Sn(2)-N(2)-C(20)	161.4(6)	Sn(2)-N(2)-C(19)	175.7(6)

Table S3.Selected bond distances (Å) and angles (°) for compounds 2b, 3'b and 3''b.

^a Symmetry codes: (i) *x*, –*y*, *z*, for **3''b**.

$[2-{(CH_2O)_2CH}C_6H_4]Me_2SnCl(1)$

- the crystal contains a 1:1 mixture of $pR_{O(1)}-R_{C(7)}-1$ and $pS_{O(1)}-S_{C(7)}-1$

Figure S17. Molecular structure of $pR_{O(1)}$ - $R_{C(7)}$ -1 isomer (*left*) and $pS_{O(1)}$ - $S_{C(7)}$ -1 isomer (*right*) in the crystal of 1, showing the intramolecular chlorine-hydrogen contacts (only methine hydrogens and hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance $Cl(1) \cdots H(6)_{aryl} 2.77 \text{ Å}$ $\sum r_{vdW}(Cl,H) 3.01 \text{ Å}$

Figure S18. View of a dimer association of $pR_{O(1)}-R_{C(7)}-1$ and $pS_{O(1)}-S_{C(7)}-1$ isomers isomers based on intermolecular C–H··· π (Ph_{centroid}) contacts in the crystal of 1 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (*1–x*, *1–y*, *1–z*), (*1.5–x*, *–0.5+y*, *0.5–z*) and (*1.5–x*, *0.5+y*, *0.5–z*) are given by "a", "b" and "c", respectively].

- intermolecular distance

Cl(1)···H(9Ab)_{methyl} 2.90 Å C(11a)–H(9Aa)_{methylene}···Ph_{centroid} {C(1)-C(6)} 2.79 Å $\gamma = 7.9^{\circ}$

Figure S19. View of a honeycomb-type layer based on intermolecular C–H··· π (Ph_{centroid}) and chlorine-hydrogen contacts in the crystal of 1 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (*1–x*, *1–y*, *1–z*), (*1.5–x*, *–0.5+y*, *0.5–z*) and (*1.5–x*, *0.5+y*, *0.5–z*) are given by "a", "b" and "c", respectively].

- no further contacts between parallel layers.

Figure S20. View along *a* axis of the layered structure in the crystal of **1** (only hydrogen atoms involved in intra- and intermolecular contacts are shown).

Figure S21. Packing of 1 viewed along b axis, showing the arrangement of the layers (only hydrogen atoms involved in intra- and intermolecular contacts are shown).

Figure S22. Packing of 1 viewed perpendicular to the bisecting line of a and c axis and also b axis, respectively, showing the arrangement of the layers (only hydrogen atoms involved in intra- and intermolecular contacts are shown).

- the crystal contains two independent molecules

Figure S23. Molecular structure of the two independent molecules in the crystal of **2**, showing the intra- and intermolecular chlorine-hydrogen contacts (only carbonyl hydrogens and hydrogen atoms involved in contacts are shown) [symmetry equivalent atoms (x, 0.5-y, -0.5+z), (1.5-x, -0.5+y, z), (1.5-x, 0.5+y, z) and (x, 0.5-y, 0.5+z) are given by "a", "b", "c" and "d" respectively].

-	intramolecular distance	Cl(1)…H(6) _{aryl} 2.84 Å	∑ <i>r</i> _{vdW} (Cl,H) 3.01 Å
		Cl(2)…H(15) _{aryl} 2.89 Å	
-	intermolecular distance	C1(1)····H(16b) _{carbonyl} 2.85 Å	
		$Cl(2) \cdots H(7d)_{carbonvl} 2.91 \text{ Å}$	

Figure S24. View along *a* axis of the M (uper) and P (lower) helicoidal polymers based on intermolecular chlorine-hydrogen contacts in the crystal of **2** (only carbonyl hydrogens and hydrogen atoms involved in contacts are shown) [symmetry equivalent atoms (x, 0.5-y, -0.5+z), (1.5-x, -0.5+y, z), (1.5-x, 0.5+y, z) and (x, 0.5-y, 0.5+z) are given by "a", "b", "c" and "d" respectively].

- no further contacts between different polymers.

Figure S25. View along b (top), c (bottom-left) and a (bottom-right) axis of the arrangement of the helicoidal polymers based on chlorine-hydrogen contacts in the crystal of 2 (only hydrogen atoms involved in intermolecular contacts are shown; each polymer was drawn with a different colour).

[2-(O=CH)C₆H₄]Me₂Sn(NCS) (3)

- 3'- the crystal contains two independent molecules

Figure S26. Molecular structure of the two independent molecules in the crystal of 3', (hydrogen atoms are omitted for clarity).

- no further contacts between different molecules.
- 3"- the crystal contains two independent molecules laying on a mirror plane

Figure S27. Molecular structure of the two independent molecules in the crystal of 3", (hydrogen atoms are omitted for clarity).

- no further contacts between different molecules.

Figure S28. View of the chlorine-hydrogen and C–H··· π (Ph_{centroid}) contacts in the crystal of 4 (only hydrogen atoms involved in intra- and intermolecular contacts are shown) [symmetry equivalent atoms (2–*x*, 1–*y*, 2–*z*), (–0.5+*x*, 1.5–*y*, 0.5+*z*), (0.5+*x*, 1.5–*y*, 0.5+*z*) and (0.5–*x*, 0.5+*y*, 1.5–*z*) are given by "a", "b", "c" and "d" respectively].

- intramolecular distance $Cl(1) \cdots H(6)_{aryl} 2.84 \text{ Å}$ $\sum r_{vdW}(Cl,H) 3.01 \text{ Å}$
- intermolecular distance C

Cl(1)····H(7b)_{imine} 2.82 Å C(8d)–H(8Ad)_{methyl}···Ph_{centroid}{C(1)-C(6)} 3.04 Å $\gamma = 20.7^{\circ}$

Figure S29. View along *c* axis of a zig-zag layer based on chlorine-hydrogen contacts in the crystal of 4 (only hydrogen atoms involved in intermolecular contacts are shown).

Figure S30. Packing of 4 along *c* axis showing the 3D architecture based on zig-zag layers connected by C–H··· π (Ph_{centroid}) interactions (only hydrogen atoms involved in intermolecular contacts are shown).

Figure S31. Molecular structure of **5**, showing the intra- and intermolecular chlorine-hydrogen contacts (only hydrogen atoms involved in contacts are shown) [symmetry equivalent atoms (– x,-y, 2-z), (-0.5+x, 0.5-y, 0.5+z) and (0.5+x, 0.5-y, -0.5+z) (are given by "a", "b" and "c", respectively].

Figure S32. View of a layer based on intermolecular chlorine-hydrogen contacts in the crystal of 5 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (-x, -y, 2-z), (-0.5+x, 0.5-y, 0.5+z), and (0.5+x, 0.5-y, -0.5+z) are given by "a", "b" and "c", respectively].

- no further contacts between different layers.

Figure S33. Packing of 5 along the a, b and c axis showing the arrangement of the supramolecular layers in crystal.

Figure S34. View of the ribbon-like polymer based on sulfur-hydrogen contacts in the crystal of **6** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (0.5-x, 1.5-y, 2-z) and (0.5+x, -0.5+y, z) are given by "a" and "b", respectively].

- intermolecular distance $S(1) \cdots H(7b)_{imine} 2.84 \text{ Å}$ $\sum r_{vdW}(S,H) 3.0 \text{ Å}$
- no contacts between different chains.

Figure S35. Packing of 6 along the *a*, *b* and *c* axis in crystal.

Figure S36. View of the dimer association based on oxygen-hydrogen contacts and the C-H··· π (Ph_{centroid}) contacts with other dimers in the crystal of **8** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (*1–x, 2–y, 1–z*) and (–*1.5–x, –0.5+y, 0.5–z*)) are given by "a", and "b", respectively].

- intermolecular distance
$$O(3) \cdots H(17a)_{TPP} 2.44 \text{ Å} \sum r_{vdW}(O,H) 2.6 \text{ Å} C(45b)-H(45b)_{Ph-TPP} \cdots Ph_{centroid} \{C(1)-C(6)\} 2.79 \text{ Å} \gamma = 15.9^{\circ} C(60)-H(60A)_{dichloromethane} \cdots Ph_{centroid} \{C(54)-C(59)\} 2.81 \text{ Å} \gamma = 11.7^{\circ}$$

Figure S37. View of the double layer based on oxygen-hydrogen and C–H… π (Ph_{centroid}) contacts in the crystal of **8** (only hydrogen atoms involved in intermolecular contacts are shown).