Electronic Supplementary Information

Transmetallation of Bis(6-diphenylphosphinoxy-acenapth-5-yl)mercury with Tin Tetrachloride, Antimony Trichloride and Bismuth Trichloride

Marian Olaru,^a Sandra Krupke,^a Enno Lork,^a Stefan Mebs,^{*b} Jens Beckmann^{*a}

^a Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7,

28359 Bremen, Germany

^b Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

^{*} Correspondence to Jens Beckmann (E-mail: <u>j.beckmann@uni-bremen.de</u>) and Stefan Mebs (E-mail: <u>stebs@chemie.fu-berlin.de</u>)

Contents

NMR spectra	2
Computational data	12
Crystallographic data	

Figure S1. ¹H NMR (360 MHz, CD₂Cl₂) spectrum of 1a.

Figure S2. ³¹P NMR (146 MHz, CD₂Cl₂) spectrum of 1a.

Figure S3. ⁷Li NMR (140 MHz, CD₂Cl₂) spectrum of 1a.

Figure S4. ¹H NMR (360 MHz, CDCl₃) spectrum of 3.

Figure S5. ¹³C{¹H} NMR (91 MHz, CDCl₃) spectrum of **3** (* denotes ¹⁹⁹Hg satellites).

Figure S7. ¹⁹⁹Hg $\{^{1}H\}$ NMR (65 MHz, CDCl₃) spectrum of **3**.

Figure S9. ¹³C{¹H} NMR (91 MHz, CD_2Cl_2) spectrum of 4 (* denotes ¹¹⁹Sn satellites).

Figure S12. ¹¹⁹Sn{¹H} NMR (134 MHz, CD₂Cl₂+THF ca. 10:1, v/v) spectrum of 4·THF.

(ppm) Figure S14. ¹³C{¹H} NMR (91 MHz, CDCl₃) spectrum of 5.

Figure S15. ${}^{31}P{}^{1}H$ NMR (146 MHz, CDCl₃) spectrum of 5.

Figure S17. ¹³C{¹H} NMR (91 MHz, DMSO-*d6*) spectrum of **6**.

Figure S18. ${}^{31}P{}^{1}H$ NMR (146 MHz, DMSO-*d6*) spectrum of 6.

Computational data

	contact	d	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	3	G/ρ(r)	H/ρ(r)	N _{ELI}	V _{ELI}	γeli	γ _{ELI} ,
		[Å]	[eÅ ⁻³]	[eÅ-5]		[a.u.]	[a.u.]	[e]	[Å ³]		•
3	PO	1.498	1.59	26.9	0.01	2.11	-0.93	1.60	2.0	1.45	
5·THF	PO	1.508	1.55	25.2	0.04	2.05	-0.91	1.54	1.9	1.47	
6 ∙THF	PO	1.509	1.55	25.2	0.01	2.05	-0.91	1.54	1.8	1.47	
5	PO	1.510	1.55	25.1	0.02	2.05	-0.92	1.56	1.9	1.46	
4·THF	PO	1.513	1.53	24.7	0.03	2.04	-0.90	1.51	1.7	1.48	
6	PO	1.513	1.54	24.7	0.01	2.04	-0.91	1.55	1.8	1.47	
4	PO	1.514	1.52	24.6	0.03	2.03	-0.90	1.49	1.7	1.47	
all	PO	1.509	1.55	25.2	0.02	2.05	-0.91	1.54	1.84	1.47	
3	HaC	2 076	0.80	27	0.04	0.68	0.46	1 88	60	1.62	
J 1	SnC	2.070	0.89	2.7	0.04	0.08	-0.40	1.00 2.33	11 1	1.02 1.74	
⊿ ∙THF	SnC	2.104	0.70	2.2	0.10	0.05	-0.42	2.33	83	1.74	
5 .THF	ShC	2.104 2 204	0.00	2.1	0.07	0.05	-0.42	2.23	8.1	1.77	
5 1111	SbC	2.204	0.71	0.0	0.00	0.55	-0.47	2.55	8.6	1.70	
6.THF	BiC	2.20)	0.70	13	0.07	0.55	-0.39	2.51	8.6	1.77	
6	BiC	2.300	0.04	1.5	0.07	0.54	-0.39	2.13	9.0	1.74	
all	EC	2.206	0.05	1.5	0.07	0.55	-0.43	2.19	8.7	1.74	
un	10	2.200	0.71	1.0	0.07	0.00	0.10	-,17	0.7	1., , 1	
$4 \cdot \text{THF}$	SnO1	2.198	0.44	6.4	0.01	1.12	-0.11	6.22	15.9	1.62	
4	SnO1	2.215	0.43	6.1	0.01	1.10	-0.11	5.50	14.6	1.62	
								0.74	1.0		1.54
sum	SnO	2.207	0.43	6.2	0.01	1.11	-0.11	6.22	15.7	1.62	1.54
5.THF	SbO1	2 4 1 3	0.32	3.0	0.06	0.77	-0.11	6 1 4	16.8	1.62	
6.THF	BiO1	2.113	0.32	3.0	0.00	0.90	-0.05	6.15	17.5	1.62	
5	ShO1	2.111	0.30	2.8	0.02	0.75	-0.11	6.12	16.9	1.61	
6	BiO1	2.464	0.31	3.8	0.01	0.88	-0.04	6.12	17.5	1.61	
sum	Sh/Bi-O	2.442	0.31	3.4	0.03	0.83	-0.08	6.13	17.2	1.61	
Juii			0.01	2.1	0.00	0.00	0.00	0.10	1,1	1.01	
3	HgO	2.626	0.22	2.9	0.12	0.92	0.02	6.11	18.2	1.60	
$4 \cdot \text{THF}$	SnO2	2.667	0.17	1.6	0.08	0.69	-0.03	4.93	11.4	1.75	
6 · THF	BiO2	2.850	0.15	1.5	0.15	0.69	0.02	5.02	12.3	1.74	
5. THF	SbO2	2.952	0.12	1.0	0.01	0.60	-0.01	4.99	12.4	1.74	

Table S1.Topological and integrated bond properties from AIM and ELI-D.

For all bonds, $\rho(\mathbf{r})_{bcp}$ is the electron density at the bond critical point, $\mathbf{*}^2 \rho(\mathbf{r})_{bcp}$ is the corresponding Laplacian, ε is the bond ellipticity, $G/\rho(\mathbf{r})_{bcp}$ and $H/\rho(\mathbf{r})_{bcp}$ are the kinetic and total energy density over $\rho(\mathbf{r})_{bcp}$ ratios, N_{ELI} and V_{ELI} are electron populations and volumes of related ELI-D basins, γ_{ELI} is the ELI-D value at the attractor position, no. refers to the number of averaged bonds. E = Sn, Sb, Hg, Bi. $O2 = O_{THF}$.

	contact	d	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	3	G/p(r)	H/ρ(r)	N _{ELI}	V _{ELI}	γ _{eli}	γ _{ELI} ,
		[Å]	[eÅ ⁻³]	[eÅ-5]		[a.u.]	[a.u.]	[e]	[Å ³]		•
3	HgCl	2.315	0.68	4.8	0.01	0.85	-0.36	7.58	38.1	1.65	
4	SnCl3	2.354	0.58	3.9	0.06	0.81	-0.34	7.76	37.6	1.67	
$4 \cdot \text{THF}$	SnCl2	2.355	0.58	3.9	0.07	0.81	-0.34	7.77	37.4	1.67	
$4 \cdot \text{THF}$	SnCl2	2.371	0.57	3.5	0.03	0.78	-0.35	7.10	34.4	1.67	
								0.66	1.1		1.45
5	SbCl2	2.377	0.59	2.5	0.06	0.69	-0.38	7.32	35.9	1.66	
								0.44	0.6		1.43
$4 \cdot \text{THF}$	SnCl2	2.391	0.53	3.7	0.03	0.80	-0.32	7.22	36.9	1.65	
								0.54	0.8		1.46
5·THF	SbCl2	2.401	0.56	2.5	0.05	0.68	-0.37	7.34	36.3	1.65	
4	SnCl1	2.408	0.52	3.4	0.01	0.78	-0.32	7.75	36.7	1.65	
$4 \cdot \text{THF}$	SnCl1	2.421	0.51	3.3	0.00	0.77	-0.32	7.35	35.7	1.65	
								0.41	0.6		1.46
5	SbCl1	2.465	0.50	2.3	0.03	0.66	-0.33	7.74	37.0	1.64	
6	BiCl2	2.485	0.52	3.0	0.03	0.71	-0.30	7.62	37.6	1.65	
5·THF	SbCl1	2.495	0.47	2.1	0.04	0.63	-0.32	7.76	36.6	1.63	
								0.42	0.6		1.44
5·THF	BiCl2	2.532	0.47	2.9	0.05	0.69	-0.27	7.63	37.8	1.64	
6	BiCl1	2.568	0.44	2.9	0.02	0.71	-0.25	7.61	37.9	1.62	
5·THF	BiCl1	2.592	0.42	2.8	0.03	0.70	-0.24	7.63	37.7	1.62	
all	ECl	2.435	0.53	3.2	0.03	0.74	-0.32	7.71	37.2	1.65	1.45
_								0.01	10.6	1.00	
5	LP(Sb)							2.21	18.6	1.93	
5 THF	LP(Sb)							2.16	16.7	1.96	
6	LP(B1)							1.93	16.9	1.53	
6 ∙THF	LP(Bi)							1.69	13.6	1.56	

Table S2.Topological and integrated bond properties from AIM and ELI-D.

For all bonds, $\rho(\mathbf{r})_{bcp}$ is the electron density at the bond critical point, $\star^2 \rho(\mathbf{r})_{bcp}$ is the corresponding Laplacian, ε is the bond ellipticity, $G/\rho(\mathbf{r})_{bcp}$ and $H/\rho(\mathbf{r})_{bcp}$ are the kinetic and total energy density over $\rho(\mathbf{r})_{bcp}$ ratios, N_{ELI} and V_{ELI} are electron populations and volumes of related ELI-D basins, γ_{ELI} is the ELI-D value at the attractor position, no. refers to the number of averaged bonds. E = Sn, Sb, Hg, Bi.

Figure S19. RSBI analysis of 4 THF. (a) AIM bond paths motif, (b) NCI *iso*-surface at $s(\mathbf{r}) = 0.5$, (c) ELI-D localization domain representation at *iso*-value of 1.3, (d) ELI-D distribution mapped on the Sn–P ELI-D basin.

Figure S20. RSBI analysis of **5**·THF (a) AIM bond paths motif, (b) NCI *iso*-surface at $s(\mathbf{r}) = 0.5$, (c) ELI-D localization domain representation at *iso*-value of 1.3, (d) ELI-D distribution mapped on the Sn–P ELI-D basin.

Figure S21. RSBI analysis of **6**·THF (a) AIM bond paths motif, (b) NCI *iso*-surface at $s(\mathbf{r}) = 0.5$, (c) ELI-D localization domain representation at *iso*-value of 1.3, (d) ELI-D distribution mapped on the Sn–P ELI-D basin.

Figure S22 RSBI analysis of **3**. (a) AIM bond paths motif, (b) NCI *iso*-surface at $s(\mathbf{r}) = 0.5$, (c) ELI-D localization domain representation at *iso*-value of 1.3, (d) ELI-D distribution mapped on the Sn–P ELI-D basin.

Crystallographic data

	$1a \cdot 2CH_2Cl_2$	3 ·THF	4
Formula	$C_{98}H_{76}Cl_5Hg_2LiO_4P_4$	C ₂₄ H ₁₈ ClHgOP	C ₂₄ H ₁₈ Cl ₃ OPSn
Formula weight, g mol ⁻¹	2026.84	589.39	578.39
Crystal system	Triclinic	Monoclinic	Triclinic
Crystal size, mm	$0.08 \times 0.08 \times 0.08$	$0.07 \times 0.05 \times 0.05$	$0.06 \times 0.05 \times 0.04$
Space group	Pl	$P2_1/n$	p1
<i>a</i> , Å	14.2748(8)	10.8014(4)	8.9934(4)
b, Å	15.6725(8)	10.3777(4)	9.5252(4)
<i>c</i> , Å	21.2164(11)	18.5406(8)	14.9658(6)
α, °	105.246(2)	90	102.200(1)
β, °	98.704(2)	105.655(1)	98.392(1)
γ, °	94.464(2)	90	113.284(1)
<i>V</i> , Å ³	4492.2(4)	2001.2(1)	1112.79(8)
Ζ	2	4	2
$ ho_{ m calcd},{ m Mg}~{ m m}^{-3}$	1.498	1.956	1.726
μ (Mo K α), mm ⁻¹	3.684	7.917	1.595
<i>F</i> (000)	2008	1128	572
θ range, deg	2.60 to 28.28	2.27 to 30.57	2.44 to 31.61
Index ranges	$-19 \leq h \leq 19$	$-15 \leq h \leq 15$	$-13 \leq h \leq 13$
	$-20 \leq k \leq 20$	$-14 \leq k \leq 14$	$-13 \leq k \leq 14$
	$-28 \le l \le 25$	$-26 \le l \le 26$	$-22 \le l \le 22$
No. of reflns collected	126062	76418	43017
Completeness to $\theta_{\rm max}$	99.9%	99.8%	99.4%
No. indep. Reflns	22272	6128	7411
No. obsd reflns with($I > 2\sigma(I)$)	18428	5850	6826
No. refined params	1027	253	271
GooF (F^2)	1.078	1.176	1.062
$R_1(F)(I > 2\sigma(I))$	0.0544	0.0198	0.0246
$wR_2(F^2)$ (all data)	0.1216	0.0516	0.0573
Largest diff peak/hole, e Å ⁻³	4.052 / -3.526	0.651/-2.109	0.636 / -1.399
CCDC number	1897901	1897902	1897903

Table S3.Crystal data and structure refinement

4·THF	5	5·THF	6
$C_{32}H_{34}Cl_3O_3PSn$	C ₂₄ H ₁₈ Cl ₂ OPSb	$C_{28}H_{26}Cl_2O_2PSb$	C ₂₅ H ₂₀ BiCl ₄ OP
722.60	546.00	618.11	718.16
Triclinic	Monoclinic	Triclinic	Triclinic
$0.08\times0.06\times0.04$	$0.07 \times 0.06 \times 0.04$	$0.08 \times 0.07 \times 0.07$	$0.08\times0.07\times0.05$
PĪ	$P2_1/n$	PĪ	pī
8.8921(3)	8.6794(3)	9.2077(3)	9.1561(3)
10.4750(4)	12.6557(5)	9.6481(4)	11.7354(4)
16.9858(7)	19.5559(8)	15.3566(6)	12.0175(5)
85.291(1)	90	97.547(1)	90.800(1)
84.161(1)	97.497(1)	97.893(1)	105.168(1)
72.333(1)	90	110.393(1)	95.897(1)
1497.5(1)	2129.73(14)	1242.80(8)	1238.58(8)
2	4	2	2
1.603	1.703	1.652	1.926
1.207	1.635	1.414	7.630
732	1080	620	688
2.32 to 30.58	2.28 to 28.35	2.30 to 28.42	2.32 to 35.63
$-12 \leq h \leq 12$	$-12 \leq h \leq 12$	$-12 \leq h \leq 11$	$-15 \leq h \leq 15$
$-14 \le k \le 14$	$-17 \leq k \leq 18$	$-12 \le k \le 12$	$-19 \leq k \leq 19$
$-24 \le l \le 24$	$-27 \leq l \leq 27$	$-20 \le l \le 20$	$-19 \le l \le 18$
48875	98732	73343	63344
99.6%	99.8%	99.2%	99.9%
9171	6549	6215	11415
8229	6038	5770	10581
361	262	307	289
1.068	1.244	1.064	1.126
0.0257	0.0214	0.0233	0.0247
0.0546	0.0610	0.0589	0.0577
0.740 / -0.801	0.559 / -1.204	0.567 / -1.294	2.568 / -3.007
1897904	1897905	1897906	1897907

Table S3.cont